On better-quasi-ordering under graph minors

Agelos Georgakopoulos

University of Warwick

Bertinoro, 29/10/25

University of Warwick

On blackboard

Conjecture (Folklore)

The finite graphs are better-quasi-ordered (BQO) under the minor relation.

Conjecture (Thomas '88)

The countable graphs are well-quasi-ordered (WQO) under the minor relation.

WQO vs. BQO

"There is not much chance of proving these conjectures because they imply that the set of all finite graphs is 'second-level better-quasi-ordered' by minor containment, which in itself seems to be a hopelessly difficult problem".

— Robertson, Seymour & Thomas '95

2nd level BQO

Given two sets of graphs $\mathcal{G}, \mathcal{G}'$, we write $\mathcal{G}<_*\mathcal{G}'$ if for every $\mathcal{G} \in \mathcal{G}$ there is $\mathcal{H} \in \mathcal{G}'$ such that $\mathcal{G} < \mathcal{H}$.

Problem

Are the sets of finite graphs WQO under <*?

Equivalently:

Problem

Is the set of minor-closed families of finite graphs WQO under \subseteq ?

2nd level BQO

Given two sets of graphs $\mathcal{G}, \mathcal{G}'$, we write $\mathcal{G}<_*\mathcal{G}'$ if for every $\mathcal{G} \in \mathcal{G}$ there is $\mathcal{H} \in \mathcal{G}'$ such that $\mathcal{G} < \mathcal{H}$.

Problem

Are the sets of finite graphs WQO under <*?

Equivalently:

Problem

Is the set of minor-closed families of finite graphs WQO under \subseteq ?

Yes if Conjecure 1 is true.

Better-Quasi-Ordering (BQO)

Given two sets of graphs $\mathcal{G}, \mathcal{G}'$, we write $\mathcal{G}<_*\mathcal{G}'$ if for every $\mathcal{G} \in \mathcal{G}$ there is $\mathcal{H} \in \mathcal{G}'$ such that $\mathcal{G} < \mathcal{H}$.

Note that $<_*$ is a quasi-order on $\mathcal{P}(\mathcal{F})$, where $\mathcal{F} := \{ \text{ Finite graphs } \}.$

We can iterate:

If $\mathcal{P}(\mathcal{F})$, $\mathcal{P}(\mathcal{P}(\mathcal{F}))$, $\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{F})))$, ... are WQO for ω_1 steps, this defines what it means for < to be a BQO.

BQO Theorems

Theorem (Nash-Williams '65)

The infinite trees are BQO (hence WQO).

BQO Theorems

Theorem (Nash-Williams '65)

The infinite trees are BQO (hence WQO).

Theorem (Laver '71)

The countable linear-order types are BQO (hence WQO) under the embeddability relation.

Theorem (Thomassé '00)

... Same for Countable Series-Parallel Orders.

Theorem (Martinez-Ranero '11)

... Same for Aronszajn lines.

Theorem (Carroy '13)

... Same for closed subsets of zero-dimensional Polish spaces.

BQO Theorems

Theorem (Nash-Williams '65)

The infinite trees are BQO (hence WQO).

Theorem (Laver '71)

The countable linear-order types are BQO (hence WQO) under the embeddability relation.

Theorem (Thomassé '00)

... Same for Countable Series-Parallel Orders.

Theorem (Martinez-Ranero '11)

... Same for Aronszajn lines.

Theorem (Carroy '13)

... Same for closed subsets of zero-dimensional Polish spaces.

Theorem (Thomas '89)

... Same for graphs of tree-width k.

WQO vs. BQO

"the poset of finite graphs endowed with the minor relation is the only naturally occurring WQO which is not yet known to be BQO".

— Y. Pequignot '17

The Theorem

A graph is rayless if it does not contain an (1-way) infinite path (aka. ray).

Theorem (G '25+)

The following statements are equivalent:

- The finite graphs are BQO;
- The countable rayless graphs are WQO;
- The countable rayless graphs are BQO.

The Theorem

A graph is rayless if it does not contain an (1-way) infinite path (aka. ray).

Theorem (G '25+)

The following statements are equivalent:

- The finite graphs are BQO;
- The countable rayless graphs are WQO;
- 3 The countable rayless graphs are BQO.

"There is not much chance of proving these conjectures because they imply that the set of all finite graphs is 'second-level better-quasi-ordered' by minor containment, which in itself seems to be a hopelessly difficult problem".

— Robertson, Seymour & Thomas '95

On Rayless graphs

Theorem (R. Schmidt '83)

A (countable) graph G is rayless iff $G \in Rank_{\alpha}$ for some ordinal α (< ω_1).

We write $Rank(G) = \alpha$ for the smallest such α .

On Rayless graphs

Theorem (R. Schmidt '83)

A (countable) graph G is rayless iff $G \in Rank_{\alpha}$ for some ordinal α ($< \omega_1$).

We write $Rank(G) = \alpha$ for the smallest such α .

Rayless graphs are easier, e.g.:

Theorem (Bruhn, Diestel, G & Sprüssel '10)

The Unfriendly Partition Conjecture is true for rayless graphs.

On Rayless graphs

Theorem (R. Schmidt '83)

A (countable) graph G is rayless iff $G \in Rank_{\alpha}$ for some ordinal α (< ω_1).

We write $Rank(G) = \alpha$ for the smallest such α .

Rayless graphs are easier, e.g.:

Theorem (Bruhn, Diestel, G & Sprüssel '10)

The Unfriendly Partition Conjecture is true for rayless graphs.

Can we prove Thomas' conjecture for rayless graphs by induction on the rank? Beyond reach...

Theorem 2

Let R denote the class of countable rayless graphs.

Theorem (G '25+)

The following statements are equivalent:

- R is WQO;
- R has no infinite descending chain;
- R has no infinite antichain;
- for every ordinal $\alpha < \omega_1$, the number of minor-twin classes of countable rayless graphs of rank α is \aleph_0 .

Say that G, G' are minor-twins, if G < G' and G' < G.

Theorem 2

Let R denote the class of countable rayless graphs.

Theorem (G '25+)

The following statements are equivalent:

- ① \Re is WQO; $<=> \mathcal{F}$ is BQO $<=> \Re$ is BQO
- R has no infinite descending chain;
- R has no infinite antichain;
- for every ordinal $\alpha < \omega_1$, the number of minor-twin classes of countable rayless graphs of rank α is \aleph_0 .

Say that G, G' are minor-twins, if G < G' and G' < G.

A rank-reducing lemma

Let $UF := \{G \mid \text{ each component of } G \text{ is finite } \}$.

Corollary

The number of minor-twin classes of UF is \aleph_0 <=> the finite graphs are WQO (=GMT).

A rank-reducing lemma

Let $UF := \{G \mid \text{ each component of } G \text{ is finite } \}.$

Corollary

The number of minor-twin classes of UF is \aleph_0 <=> the finite graphs are WQO (=GMT).

(True for other graph relations.)

A rank-reducing lemma

Let $UF := \{G \mid \text{ each component of } G \text{ is finite } \}$.

Corollary

The number of minor-twin classes of UF is \aleph_0 <=> the finite graphs are WQO (=GMT).

(True for other graph relations.)

For a rayless G, let

$$C(G) := \{ H \mid H < G \text{ and } Rank(H) < Rank(G) \}$$

(For $G \in UF$, these are the finite minors of G.)

Lemma

For every
$$G, G' \in UF$$
, we have $C(G) \subseteq C(G') \Longleftrightarrow G < G'$.

Lemma

For every $G, G' \in UF$, we have $C(G) \subseteq C(G') \Longleftrightarrow G < G'$.

Conjecture (Seymour's self-minor conjecture (unpublished))

Every (countable) graph is a proper minor of itself.

False for uncountable graphs [Oporowski '90].

Lemma

For every $G, G' \in UF$, we have $C(G) \subseteq C(G') \Longleftrightarrow G < G'$.

Conjecture (Seymour's self-minor conjecture (unpublished))

Every (countable) graph is a proper minor of itself.

False for uncountable graphs [Oporowski '90].

Corollary

True for rayless graphs (of any cardinality).

Lemma

For every $G, G' \in Rank_1$, we have $C^{\bullet}(G) \subseteq C^{\bullet}(G') <=> G < G'$.

Conjecture (Seymour's self-minor conjecture (unpublished))

Every (countable) graph is a proper minor of itself.

False for uncountable graphs [Oporowski '90].

Corollary

True for rayless graphs (of any cardinality).

Lemma

For every $G, G' \in Rank_1$, we have $C^{\bullet}(G) \subseteq C^{\bullet}(G') \iff G \iff G'$.

where
$$C^{\bullet}(G) := \{ \text{ finite } (H, M) \mid (H, M) <_{\bullet} (G, A(G)) \text{ and } Rank(H) < Rank(G) \}$$

Conjecture (Seymour's self-minor conjecture (unpublished))

Every (countable) graph is a proper minor of itself.

False for uncountable graphs [Oporowski '90].

Corollary

True for rayless graphs (of any cardinality).

The Rank-reducing lemma

Lemma

For every $G, G' \in Rank_1$, we have $C^{\bullet}(G) \subseteq C^{\bullet}(G') <=> G < G'$.

More generally:

Lemma

Let $G, H \in \underset{\alpha}{\mathsf{Rank}}_{\alpha}, \alpha < \omega_1$. Assume $\operatorname{Rank}_{<\alpha}^{\bullet}$ is WQO, and $|\operatorname{Rank}_{<\alpha}^{\bullet}|_{<_{\bullet}}$ is countable. We have $G < G' <=> C^{\bullet}(G) \subseteq C^{\bullet}(G')$.

Theorem 2 again

 $\mathcal{R} := \{ \text{ countable rayless graphs } \}.$

Theorem (G '25+)

The following statements are equivalent:

- lacktriangledown \mathcal{R} is WQO; $\langle <= \rangle \mathcal{F}$ is BQO $\langle => \mathcal{R}$ is BQO)
- R has no infinite descending chain;
- R has no infinite antichain;
- for every ordinal $\alpha < \omega_1$, the number of minor-twin classes of countable rayless graphs of rank α is \aleph_0 .

Theorem 2 again

Theorem (G '25+)

The following are equivalent for every $\alpha < \omega_1$:

- **1** Rank $_{<\alpha}^{n\bullet}$ is WQO for every $n \in \mathbb{N}$;

- **1** Rank $_{\alpha}^{\bullet}$ has no descending chain;
- **1** Rank $_{\alpha}$ has no descending chain;
- **3** Rank^{$n_{<\alpha}$} has no antichain for every $n \in \mathbb{N}$;

Theorem 2 again

Theorem (G '25+)

The following are equivalent for every $\alpha < \omega_1$:

- **1** Rank $_{<\alpha}^{n\bullet}$ is WQO for every $n \in \mathbb{N}$;

- **1** Rank $_{\alpha}^{\bullet}$ has no descending chain;
- **1** Rank $_{\alpha}$ has no descending chain;
- **3** Rank^{$n_{<\alpha}$} has no antichain for every $n \in \mathbb{N}$;

Lemma

Let $G, H \in Rank_{\alpha}, \alpha < \omega_1$. Assume $Rank_{<\alpha}^{\bullet}$ is WQO, and $|Rank_{<\alpha}^{\bullet}|_{<\bullet}$ is countable. We have $G < G' <=> C^{\bullet}(G) \subseteq C^{\bullet}(G')$.

Theorem 1 again

Theorem (G '25+)

The following statements are equivalent:

- The finite graphs are BQO;
- The countable rayless graphs are WQO;
- The countable rayless graphs are BQO.

Theorem 1 again

Theorem (G '25+)

The following statements are equivalent:

- The finite graphs are BQO;
- The countable rayless graphs are WQO;
- The countable rayless graphs are BQO.

Theorem 1 again

Theorem (G '25+)

The following statements are equivalent:

- The finite graphs are BQO;
- The countable rayless graphs are WQO;
- The countable rayless graphs are BQO.

Theorem (Folklore; Pequignot '17)

A quasi-order $\mathcal F$ is BQO if and only if $HCIP(\mathcal F)$ is WQO.

where $HCIP(\mathcal{F})$ denotes the set of hereditarily countable elements of $\mathcal{F} \cup \mathcal{P}(\mathcal{F}) \cup \mathcal{P}(\mathcal{P}(\mathcal{F})) \cup \dots$ (up to ω_1).

Forbidding a rayless tree

Theorem (G '25+)

Let \mathcal{T} be a minor-closed family of \mathbb{N} -labelled rayless forests. Then \mathcal{T} is **Borel** if and only if it is proper, i.e. it does not contain all rayless forests.

Forbidding a rayless tree

Theorem (G '25+)

Let \mathcal{T} be a minor-closed family of \mathbb{N} -labelled rayless forests. Then \mathcal{T} is **Borel** if and only if it is proper, i.e. it does not contain all rayless forests.

Proof ingredients:

- Thomas' theorem that the graphs of tree-width *k* are WQO;
- The rank-reducing lemma;
- Hacking the Turing machine (with J. Grebik).

Forbidding a rayless tree

Theorem (G '25+)

Let $\mathcal T$ be a minor-closed family of $\mathbb N$ -labelled rayless forests. Then $\mathcal T$ is **Borel** if and only if it is proper, i.e. it does not contain all rayless forests.

Proof ingredients:

- Thomas' theorem that the graphs of tree-width *k* are WQO;
- The rank-reducing lemma;
- Hacking the Turing machine (with J. Grebik).

Problem

Is there a family of rayless \mathbb{N} -labelled graphs which is closed under minors, has rank less than ω_1 , and is not Borel?

If yes then the finite graphs are not BQO.

Subclasses

Problem

Are the finite planar graphs BQO?

Theorem (G '25+)

The following statements are equivalent:

- The finite graphs are BQO;
- The countable rayless graphs are WQO;
- The countable rayless graphs are BQO.