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On blackboard

Conjecture (Folklore)

The finite graphs are better-quasi-ordered (BQO) under the
minor relation.

Conjecture (Thomas ’88)

The countable graphs are well-quasi-ordered (WQO) under the
minor relation.
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WQO vs. BQO

“There is not much chance of proving these conjectures
because they imply that the set of all finite graphs is
‘second-level better-quasi-ordered’ by minor containment,
which in itself seems to be a hopelessly difficult problem”.

— Robertson, Seymour & Thomas ’95
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2nd level BQO

Given two sets of graphs G,G′, we write G<∗G′ if for every
G ∈ G there is H ∈ G′ such that G < H.

Problem
Are the sets of finite graphs WQO under <∗?

Equivalently:

Problem
Is the set of minor-closed families of finite graphs WQO under ⊆?

Yes if Conjecure 1 is true.
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Better-Quasi-Ordering (BQO)

Given two sets of graphs G,G′, we write G<∗G′ if for every
G ∈ G there is H ∈ G′ such that G < H.

Note that <∗ is a quasi-order on P(F ), where
F := { Finite graphs }.

We can iterate:

If P(F ), P(P(F )), P(P(P(F ))), ... are WQO
for ω1 steps, this defines what it means for < to be a BQO.
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BQO Theorems
Theorem (Nash-Williams ’65)

The infinite trees are BQO (hence WQO).

Theorem (Laver ’71)

The countable linear-order types are BQO
(hence WQO) under the embeddability relation.

Theorem (Thomassé ’00)

... Same for Countable Series-Parallel Orders.

Theorem (Martinez-Ranero ’11)

... Same for Aronszajn lines.

Theorem (Carroy ’13)

... Same for closed subsets of zero-dimensional
Polish spaces.

Theorem (Thomas ’89)

... Same for graphs of tree-width k.
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WQO vs. BQO

“the poset of finite graphs endowed with the minor relation is
the only naturally occurring WQO which is not yet known to be
BQO”.

— Y. Pequignot ’17
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The Theorem
A graph is rayless if it does not contain an (1-way) infinite path
(aka. ray).

Theorem (G ’25+)
The following statements are equivalent:

1 The finite graphs are BQO;

2 The countable rayless graphs are WQO;
3 The countable rayless graphs are BQO.

“There is not much chance of proving these conjectures
because they imply that the set of all finite graphs is
‘second-level better-quasi-ordered’ by minor containment,
which in itself seems to be a hopelessly difficult problem”.

— Robertson, Seymour & Thomas ’95
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On Rayless graphs

Theorem (R. Schmidt ’83)
A (countable) graph G is rayless iff G ∈ Rankα for some ordinal
α (< ω1).

We write Rank(G) = α for the smallest such α.

Rayless graphs are easier, e.g.:

Theorem (Bruhn, Diestel, G & Sprüssel ’10)
The Unfriendly Partition Conjecture is true for rayless graphs.

Can we prove Thomas’ conjecture for rayless graphs by
induction on the rank? Beyond reach...
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Theorem 2

Let R denote the class of countable rayless graphs.

Theorem (G ’25+)
The following statements are equivalent:

1 R is WQO;

<=> F is BQO <=> R is BQO

2 R has no infinite descending chain;
3 R has no infinite antichain;
4 for every ordinal α < ω1, the number of

minor-twin classes of countable rayless
graphs of rank α is ℵ0.

Say that G,G′ are minor-twins, if G < G′ and G′ < G.
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A rank-reducing lemma
Let UF := {G | each component of G is finite }.

Corollary
The number of minor-twin classes of UF is ℵ0
<=> the finite graphs are WQO (=GMT).

(True for other graph relations.)

For a rayless G, let
C(G) := { H | H < G and Rank(H) < Rank(G) }
(For G ∈ UF , these are the finite minors of G.)

Lemma
For every G,G′ ∈ UF, we have
C(G) ⊆ C(G′) <=> G < G′.
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Corollary 2: Self-minors

Lemma
For every G,G′ ∈ UF, we have
C(G) ⊆ C(G′) <=> G < G′.

where C•(G) := { finite (H ,M) |
(H ,M) <• (G,A(G)) and Rank(H) < Rank(G) }

Conjecture (Seymour’s self-minor conjecture (unpublished))
Every (countable) graph is a proper minor of itself.

False for uncountable graphs [Oporowski ’90].

Corollary
True for rayless graphs (of any cardinality).
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The Rank-reducing lemma

Lemma
For every G,G′ ∈ Rank1, we have
C•(G) ⊆ C•(G′) <=> G < G′.

More generally:

Lemma
Let G,H ∈ Rankα, α < ω1. Assume Rank•<α is

WQO, and |Rank•<α|<• is countable. We have
G < G′ <=> C•(G) ⊆ C•(G′).
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Theorem 2 again
R := { countable rayless graphs }.

Theorem (G ’25+)
The following statements are equivalent:

1 R is WQO; (<=> F is BQO <=> R is BQO)
2 R has no infinite descending chain;
3 R has no infinite antichain;
4 for every ordinal α < ω1, the number of

minor-twin classes of countable rayless
graphs of rank α is ℵ0.

Lemma
Let G,H ∈ Rankα, α < ω1. Assume Rank•<α is

WQO, and |Rank•<α|<• is countable. We have
G < G′ <=> C•(G) ⊆ C•(G′).
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Theorem 2 again
Theorem (G ’25+)
The following are equivalent for every α < ω1:

1 Rankn•
<α is WQO for every n ∈ N;

2 |Rankα|< = ℵ0;
3 |Rank•α|<• = ℵ0;

4 |Rankα|< < 2ℵ0 ;
5 Rank•α has no descending chain;

6 Rankα has no descending chain;
7 Rankn•

<α has no antichain for every n ∈ N;

Lemma
Let G,H ∈ Rankα, α < ω1. Assume Rank•<α is

WQO, and |Rank•<α|<• is countable. We have
G < G′ <=> C•(G) ⊆ C•(G′).
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Theorem 1 again

Theorem (G ’25+)
The following statements are equivalent:

1 The finite graphs are BQO;

2 The countable rayless graphs are WQO;
3 The countable rayless graphs are BQO.

Theorem (Folklore; Pequignot ’17)

A quasi-order F is BQO if and only if HCIP(F ) is WQO.

where HCIP(F ) denotes the set of hereditarily countable
elements of F ∪ P(F ) ∪ P(P(F )) ∪ . . . (up to ω1).
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Forbidding a rayless tree

Theorem (G ’25+)
Let T be a minor-closed family of N-labelled rayless forests.
Then T is Borel if and only if it is proper, i.e. it does not
contain all rayless forests.

Proof ingredients:
— Thomas’ theorem that the graphs of tree-width k are WQO;
— The rank-reducing lemma;
— Hacking the Turing machine (with J. Grebik).

Problem

Is there a family of rayless N-labelled graphs which is closed
under minors, has rank less than ω1, and is not Borel?

If yes then the finite graphs are not BQO.
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Subclasses

Problem

Are the finite planar graphs BQO?

Theorem (G ’25+)
The following statements are equivalent:

1 The finite graphs are BQO;

2 The countable rayless graphs are WQO;
3 The countable rayless graphs are BQO.
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