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Abstract

We prove that for every t ∈ N, the graph K2,t satisfies the fat minor
conjecture of Georgakopoulos and Papasoglu: for every K ∈ N there exist
M,A ∈ N such that every graph with no K-fat K2,t minor is (M,A)-quasi-
isometric to a graph with no K2,t minor. We use this to obtain an efficient
algorithm for approximating the minimal multiplicative distortion of any
embedding of a finite graph into a K2,t-minor-free graph, answering a
question of Chepoi, Dragan, Newman, Rabinovich, and Vaxès from 2012.
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1 Introduction

Coarse graph theory is a rapidly developing new area that studies graphs from a
geometric perspective, and conversely, transfers graph-theoretic results to metric
spaces. The focus is on large-scale properties of the graphs and spaces involved,
in particular on properties that are stable under quasi-isometries (defined in
Section 2.3). A central notion of this area is that of a K-fat minor , a geometric
analogue of the classical notion of graph minor whereby branch sets are required
to be at distance at least some distance K from each other, and the edges
connecting them are replaced by long paths, also at distance K from each other,
and from their non-incident branch sets; see Section 2.2 for details. We say that
a graph J is an asymptotic minor of a graph G, if J is a K-fat minor of G for
every K ∈ N. For any fixed J , this property is easily seen to be invariant under
quasi-isometry on G ([13, Observation 2.4]).
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Much of the impetus of coarse graph theory is due to the following conjecture
of [13]:

Conjecture 1.1 ([13]). For every finite graph J and every K ∈ N there exist
M,A ∈ N such that every graph with no K-fat J minor is (M,A)-quasi-isometric
to a graph with no J minor.

In other words, the conjecture asks whether every graph (family) forbidding
J as an asymptotic minor is (uniformly) quasi-isometric with a graph (family)
forbidding J as a minor. This was a natural conjecture to make, as the converse
is easily seen to be true. However, Conjecture 1.1 was disproven by Davies,
Hickingbotham, Illingworth and McCarty [10]. In a companion paper [4] we
will provide much smaller counterexamples; in particular, we will prove that it
is false for J = Kt, t ≥ 6, and for Ks,t, s, t ≥ 4. Recently, Albrechtsen and
Davies [2] also disproved a weaker version of Conjecture 1.1, stated in [10],
postulating a quasi-isometry to a graph forbidding some possibly much larger
graph J ′ as a minor.

This negative answer to Conjecture 1.1 fuels the interest in the broader
quest, already initiated by Bonamy et al. [8], to understand graphs (or graph
families) with a forbidden asymptotic minor. A substantial aspect of this quest,
motivating the current paper, is to understand the limits of the validity of the
conjecture. Several positive results have been obtained so far: Conjecture 1.1 is
true e.g. for J = K3 (more generally, for any cycle J) [13], for J = K1,t [13, 14],
for J = K−

4 [12, 6], J = K2,3 [9, 12], and J = K4 [6]. An important open
question, due to its connection with induced minors, is whether Conjecture 1.1
is true for K = 2.

Given the above results, a central outstanding case towards understanding
which graphs satisfy Conjecture 1.1 is the case J = K2,t, t ≥ 4. This question is
implicit in earlier work of Chepoi, Dragan, Newman, Rabinovich and Vaxès [9],
where a variant of the notion of fat minor is introduced. The aim of this paper
is to settle this question in the affirmative; we prove

Theorem 1.2. For every t ∈ N there exists a function f : N → N2 such that
every graph with no K-fat K2,t minor is f(K)-quasi-isometric to a graph with
no K2,t minor.

We remark that this problem bears some similarity to the coarse Menger
conjecture [5, 13], which has been disproven even in a much weaker form [15].

Our proof is constructive, and we obtain the bound (9t12K + 204t9K, 1) on
f(K). In other words, the additive distortion we obtain is 1, and the multiplica-
tive distortion O(K). From this it is easy to obtain a map of additive distortion 0
(and still with multiplicative distortion O(K) [13, Observation 2.2]1).

Given a finite graph G, let αt(G) denote the minimal multiplicative distor-
tion of any embedding of G into a K2,t-minor-free graph. Chepoi et al. [9] asked
whether there is an efficient algorithm that approximates αt(G) to a constant
factor. Using the above remarks we answer this question in the affirmative:

1The additive error can always be hidden inside the multiplicative factor, unless more than
one vertex of G is mapped to the same vertex of H. In this case, attach a star of size |V (G)|
to each vertex h of H (which does not create any K2,t minors), and for each vertex v of G
previously mapped to h, map v to a distinct leaf of the star attached to h.
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Corollary 1.3. For every t ∈ N, there is a polynomial-time algorithm that given
a finite graph G, approximates αt(G) up to a universal multiplicative constant.

We prove this in Section 8, where we offer some related open problems.

1.1 Other problems

As mentioned above, Theorem 1.2 becomes false if we replace K2,t by K4,t, t ≥ 4
(even in a weak form as in Question 1.2 below), but we do not know if it is true
for K3,t, t ≥ 3. The case J = K3,3 is particularly important, as it is closely
related to the ‘coarse Kuratowski conjecture’ of [13]:

Question 1.4. Are there functions f : N → N2 and s : N → N such that
every graph with no K-fat K3,t minor is f(K)-quasi-isometric to a graph with
no K3,s(t) minor? Can we choose s(t) = t?

Another question of [13] is for which J we can achieve M = 1 in Con-
jecture 1.1, and variants of this question are discussed by Nguyen, Scott and
Seymour [14, 16]. Settling this for J = K2,t would be interesting, but our proof
does not provide evidence.

1.2 Proof approach

Like many results in the area, our proof of Theorem 1.2 is achieved by decompos-
ing the vertex set of the underlying graph G into ‘bags’, of bounded diameter,
so that after collapsing each bag into a vertex, the resulting graph H is quasi-
isometric to G. The standard technique is to achieve such a decomposition by
first decomposing G into its distance layers from a fixed ‘root’ vertex, and place
nearby vertices of a fixed layer, or a fixed number of consecutive layers, into
a bag, see e.g. [13, Theorem 3.1]. Our decomposition is based on a rather in-
tricate refinement of this technique, whereby the number of consecutive layers
from which a bag is formed is not fixed but depends on the local structure.
Once H is constructed, one then needs a way to turn any K2,t minor of H into
a K-fat minor of G; this is not straightforward, one of the difficulties being that
bags are not necessarily connected. Thus our proof requires new ideas involving
a new way of forming branch sets in G out of bags in H by using vertices from
bags of lower layers. To ensure that distinct branch sets are K-far apart, we
use a new ‘buffer zone’ technique within each bag, i.e. a sequence of layers that
can only be used to accommodate branch paths. A more detailed overview of
our proof is given in Section 3.

2 Preliminaries

Graphs in this paper are allowed to be infinite, unless stated otherwise. We
follow the basic graph-theoretic terminology of [11]; in particular, N includes 0,
and we denote by ||G|| the number of edges of a graph G. Note that if P is
a path, then ||P || is its length. Moreover, a set U of vertices in a graph G is
connected , if the subgraph G[U ] it induces is connected.

Given a graph G, we write C(G) for the set of components of G. Given a
subgraph Y of G, the boundary ∂GY of Y is the set of all vertices of Y that
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send an edge to G− Y . The neighbourhood NG(Y ) of Y is the set of vertices of
G− Y sending an edge to Y (and therefore to ∂GY ).

2.1 Distances

Let G be a graph. We write dG(v, u) for the distance between two vertices v
and u in G. For two sets U and U ′ of vertices of G, we write dG(U,U

′) for the
minimum distance of two elements of U and U ′, respectively. If one of U or U ′

is just a singleton, then we omit the braces, writing dG(v, U
′) := dG({v}, U ′)

for v ∈ V (G).
Given a set U of vertices of G, the ball (in G) around U of radius r ∈

N, denoted by BG(U, r), is the set of all vertices in G of distance at most r
from U in G. If U = {v} for some v ∈ V (G), then we again omit the braces,
writing BG(v, r) instead of BG({v}, r).

The diameter diam(G) of G is the smallest number k ∈ N ∪ {∞} such that
dG(u, v) ≤ k for every two u, v ∈ V (G). If G is empty, then we define its
diameter to be 0. We remark that if G is disconnected but not the empty
graph, then its diameter is ∞. The diameter of a set U ⊆ V (G) in G, denoted
by diamG(U), is the smallest number k ∈ N such that dG(u, v) ≤ k for all
u, v ∈ U or ∞ if such a k ∈ N does not exist.

If Y is a subgraph of G, then we abbreviate dG(U, V (Y )), diamG(V (Y )) and
BG(V (Y ), r) as dG(U, Y ), diamG(Y ) and BG(Y, r), respectively.

Let G be a graph. We say that U ⊆ V (G) is K-near-connected for K ∈ N,
if for every x, y ∈ U , there is a sequence x = x0, x1, . . . , xk = y of vertices in U
such that d(xi, xi+1) ≤ K for every i < k. Such a sequence P = x0, . . . , xk will
be called an K-near path from x to y. A K-near-component of U is a maximal
subset of U that is K-near-connected.

2.2 Fat minors

Let J,G be (multi-)graphs. A model (U , E) of J in G is a collection U of
disjoint, connected sets Ux ⊆ V (G), x ∈ V (J), and a collection E of internally
disjoint Ux–Uy paths Ee, one for each edge e = xy of J , such that Ee is disjoint
from every Uz with z ̸= x, y. The Ux are the branch sets and the Ee are the
branch paths of the model. A model (U , E) of J in G is K-fat for K ∈ N if
distG(Y,Z) ≥ K for every two distinct Y,Z ∈ U ∪E unless Y = Ee and Z = Ux

for some vertex x ∈ V (J) incident to e ∈ E(J), or vice versa. We say that J is
a (K-fat) minor of G, if G contains a (K-fat) model of X. We remark that the
0-fat minors of G are precisely its minors.

Lemma 2.1. Let J,G be (multi-)graphs, and let J̇ be the graph obtained from
J by subdividing each of its edges precisely once. If J is a 3K-fat minor of G
for some K ∈ N, then J̇ is a K-fat minor of G.

This lemma is a variant of [13, Lemma 5.3]; we include a proof for conve-
nience.

Proof. Let (U , E) be a 3K-fat model of J in G. We construct a K-fat model
(U ′, E ′) of J̇ in G as follows. For every x ∈ V (J), we keep U ′

x := Ux as a branch
set. For every edge e = xy ∈ E(J), we let ue be the last vertex on Ee, as we
move from Ux to Uy along Ee, such that dG(Ux, ue) ≤ K, and we let ve be the
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first vertex after ue along Ee such that dG(Uy, ve) ≤ K. We let the branch

set U ′
we

for the subdivision vertex of J̇ on e be the subpath of Ee between ue

and ve. For z ∈ {x, y}, we let E′
zwe

be an U ′
z–U

′
we

path of length K. This
completes the definition of (U ′, E ′).

As (U , E) is 3K-fat and E′
xwe

⊆ BG(Ee,K) for all edges of J̇ , we have

dG(E
′
xwe

, E′
ywf

) ≥ 3K − 2K = K for all edges xwe ̸= ywf of J̇ , unless e = f ,

in which case we have dG(E
′
xwe

, E′
ywe

) ≥ dG(Ux, Uy) − ||E′
xwe

|| − ||E′
ywe

|| =

3K−K−K = K by the choice of the branch paths of J̇ . Similarly and because
U ′
we

⊆ Ee for all subdivision vertices of J̇ , we have dG(U
′
x, U

′
y) ≥ 3K for all

x ̸= y ∈ V (J̇), unless one of x, y is a subdivision vertex we on an edge e of J
incident with the other, in which case we have dG(U

′
x, U

′
y) ≥ K by the choice

of the U ′
we

. Hence, it remains to consider x ∈ V (J̇) and ywe ∈ E(J̇). If x is a
subdivision vertex on an edge f of J , then dG(U

′
x, E

′
ywe

) ≥ dG(Ef , Ee) ≥ 3K −
K = 2K. Otherwise, dG(U

′
x, E

′
ywe

) ≥ dG(Ux, Uy) − ||E′
ywe

|| = 3K −K = 2K,
as desired.

2.3 Quasi-isometries and graph-partitions

Let G,H be graphs. For M ∈ R≥1 and A ∈ R≥0, an (M,A)-quasi-isometry
from G to H is a map φ : V (G) → V (H) such that

(Q1) M−1 · dG(u, v)− A ≤ dH(φ(u), φ(v)) ≤ M · dG(u, v) + A for every u, v ∈
V (G), and

(Q2) for every h ∈ V (H) there is v ∈ V (G) such that dH(h, φ(v)) ≤ A.

We say that a map φ : V (G) → V (H) has multiplicative distortion M
(respectively, additive distortion A) if it satisfies (Q1) with A = 0 (resp.M = 1).

A graph-partition of G over H, or H-partition for short, is a partition H :=
(Vh : h ∈ V (H)) of V (G) indexed by the nodes of H such that for every edge
uv ∈ E(G), if u ∈ Vg and v ∈ Vh, then g = h or gh ∈ E(H). (This notion
generalizes tree-partitions.)

We say that H is honest , if Vh is non-empty for all h ∈ V (H) and if for every
edge gh ∈ E(H) there exists an edge uv ∈ V (G) such that u ∈ Vg and v ∈ Vh.
We say that H is R-bounded , if each Vh has diameter at most R(K).

Lemma 2.2. Let H,G be graphs, and let H be an honest, R-bounded H-
partition of G for some R ∈ R. Then G is (R + 1, R/(R + 1))-quasi-isometric
to H.

This is a special case of [3, Lemma 3.9]; we include a proof for convenience:

Proof. As the Vh are pairwise disjoint and cover V (G), there is for every v ∈
V (G) a unique hv ∈ V (H) such that v ∈ Vhv

. We claim that φ : V (G) → V (H)
with φ(v) := hv is the desired quasi-isometry from G to H. Let us check that
φ satisfies both properties of the definition of quasi-isometry:

(Q2): As the Vh are non-empty, there is for every h ∈ V (H) some v ∈ V (G)
such that h = φ(v), and hence h has distance 0 from φ(v).

(Q1): Fix u, v ∈ V (G). Since w ∈ Vφ(w) for all w ∈ V (H), every u–w path P
in G of length ℓ ∈ N induces a φ(u)–φ(w) walk in H of length at most ℓ with
vertex set {h ∈ V (H) | ∃p ∈ V (P ) : p ∈ Vh}. Hence, dH(φ(u), φ(v)) ≤ dG(u, v).
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Conversely, every φ(u)–φ(v) path in H of length ℓ can be turned into a u–v
walk in G of length at most ℓ · (R+ 1) +R as the Vh have diameter at most R
and H is honest. Hence, dG(u, v) ≤ (R+ 1) · dH(φ(u), φ(v)) +R.

3 Structure of the proof of Theorem 1.2

For the proof of Theorem 1.2 we construct a graph-partition of a graph G
with no K-fat K2,t minor, and then employ Lemma 2.2 to obtain the desired
quasi-isometry. More precisely, we will prove the following stronger version of
Theorem 1.2:

Theorem 3.1. For every t ∈ N there exists a function R : N → N such that
every graph G with no K-fat K2,t minor has an honest, R(K)-bounded graph-
partition over a graph H such that every 2-connected multi-graph which is a
minor of H is a K-fat minor of G.

Let us first show that Theorem 3.1 implies Theorem 1.2:

Proof of Theorem 1.2 given Theorem 3.1. Fix t,K ∈ N, and let G be a graph
with noK-fatK2,t minor. Let (H, (Vh)h∈V (H)) be anR-bounded graph-partition
of G as provided by Theorem 3.1. Then G is (R+1, R/(R+1))-quasi-isometric
to H by Lemma 2.2, and H has no K2,t minor.

In this proof of Theorem 1.2 we showed that G is quasi-isometric to the
graph H from Theorem 3.1. Since H has the property that all its 2-connected
minors are K-fat minors of G, we have the following corollary:

Corollary 3.2. Fix t ∈ N, and let J be a class of finite, 2-connected graphs
containing K2,t. Then there exists a function f : N → N2 such that every graph
with no K-fat minor in J is f(K)-quasi-isometric to a graph with no minor
in J .

Our proof of Theorem 3.1 will be divided into two steps. The first step is to
structure our graph G as an H-partition as in Lemma 2.2, but with additional
properties (Lemma 3.4 below). The second step is to show that these properties
imply that any 2-connected subgraph of H is a K-fat minor of G (Lemma 3.3).
To describe these additional properties ((i)–(iv) below), we need the following
definitions.

A rooted graph is a pair (H, s) where H is a graph and s is one of its
vertices, called its root . We will sometimes omit s from the notation if it is clear
from the context. A rooted graph (H, s) has a natural layering: we denote by
Li = Li

H,s := {h ∈ V (H) : dH(s, h) = i} the i-th layer of H. Given a vertex

h ∈ V (H) we denote by ih = ih,s the unique integer satisfying h ∈ Lih .
Let H = (H, (Vh)h∈V (H)) be a graph-partition of a graph G over a graph H.

If H is rooted, then for every n ∈ N we let Gn = Gn
H denote the subgraph of G

induced by those vertices that are contained in partition classes Vh of nodes h
in the layers of H up to Ln, i.e. Gn := G[

⋃
i≤n

⋃
h∈Li Vh].

All graphsH used in graph-partitionsH = (H, (Vh)h∈V (H)) in the remainder
of this paper will be rooted, and we will ensure that

(i) for all i ∈ N the layer Li is an independent set,
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i.e. there are no edges xy ∈ E(H) with x, y ∈ Li. In particular, H is bipartite,
and for every edge gh ∈ E(H) there exists i ∈ N such that g ∈ Li and h ∈ Li+1.

Given H as above, and a node h of H, we let ∂↓
h be the set of vertices of Vh

that send an edge to some vertex of Gih−1.
The height Rh of a node h of H is the maximum distance maxv∈Vh

d(∂↓
h, v)

of one of its vertices from its ‘bottom’ ∂↓
h. We say that Vh is level , if

(ii) Vh = BG−Gih−1(∂↓
h, Rh).

Recall that we are trying to produce a graph-partitionH of our graph G as in
Theorem 3.1, so that every 2-connected minor J ofH is aK-fat minor of G. The
naive way to try to turn J < H into a K-fat minor of G is to replace each vertex
h ∈ V (H) in the model of J by Vh. But this is too naive for two reasons: firstly,
the Vh are not necessarily connected, and secondly, they are not necessarily K-
far apart when we want them to be. To address these issues, instead of using
a Vh in our branch sets, we will instead use a connected region of G around
∂↓
h. This region (depicted in (dark) blue in Figure 1) will consist of a subgraph

of Vh of height less than Rh − K, as well as an undergrowth, i.e. a subgraph
of the layer below ih (hence outside Vh) used to ensure connectedness. We use
the following notation to describe these subgraphs precisely. For h ∈ V (H) and
R ∈ N, let

∂↑
h(R) := BG−Gih−1(∂↓

h, R).

In particular, (ii) can be reformulated as Vh = ∂↑
h(Rh), but we will use this

notation with R < Rh to capture a shorter subgraph of Vh. To define the
aforementioned undergrowth, we similarly introduce

∂↓
h(r) := BG(∂

↓
h, r) \ ∂

↑
h(r)

for h ∈ V (H) and r ∈ N. We remark that we think of ∂↓
h(r) as lying ‘below’ ∂↓

h

and being mostly contained in Gih−1. In fact, whenever we use ∂↓
h(r), we will

make sure that for most other nodes g ∈ V (H) in the same layer as h, their ∂↓
g

is more than r far apart from ∂↓
h, so that ∂↓

h(r) cannot enter Gih through ∂↓
g

(and hence will be disjoint from Vg). (The only exception will be nodes g ∈ Lih

that can be separated from h by removing a single node of H (see (iv) below).)

The second step of our proof of Theorem 3.1 mentioned above is made precise
by the following lemma (see Figure 1 for a sketch of the properties (ii) to (iv)):

Lemma 3.3. Let K, ℓ ∈ N, let H be a rooted graph, and let G be a graph with
an honest graph-partition (H, (Vh)h∈V (H)) satisfying (i) and (ii) for every h.
Suppose every h ∈ V (H) has height Rh ≥ ℓ + K, and there is rh ∈ N with
0 < rh ≤ ℓ such that

(iii) ∂↑
h(Rh − ℓ−K) ∪ ∂↓

h(rh) is connected, and

(iv) for all non-adjacent g ̸= h ∈ V (H) either dG(Vg, Vh) ≥ 2 ·max{rg, rh} +
3K, or there is a node in H that separates g, h.

Then every 2-connected subgraph of H is a K-fat minor of G.
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Gn

Gn−1

Vg′

V ↓
g′ V ↓

h

V ↑
h ∂↓

h

V ↓
g

Vg

Vh Rh

rh

≥ 3K

≥ 3K

≥ 3K

Figure 1: Depicted is a partition class Vh of the graph-partition in Lemma 3.3.
The (dark) blue vertex set V ↑

h ∪ V ↓
h is connected by (iii), and dG(Vh ∪ V ↓

h , Vg′ ∪
V ↓
g′) ≥ 3K holds by (iv).

Given the setup of this lemma, let V ↑
h := ∂↑

h(Rh − ℓ−K) and V ↓
h := ∂↓

h(rh).

Thus (iii) says that V ↑
h ∪ V ↓

h is connected.
Let us briefly sketch how Lemma 3.3 is proved. Given a 2-connected J ⊆ H,

we build a model of J in G by replacing each vertex h ∈ V (J) by V ↑
h ∪V ↓

h , which
is connected by (iii) as just mentioned. For each edge e = hg ∈ E(J) where g
is in the layer above that of h, we model e by a branch path within Vh incident
with the undergrowth V ↓

g of g inside Vh. We have tuned our parameters (by

demanding rh ≤ ℓ) so that each Vh has a buffer zone above V ↑
h and below all

undergrowths protruding from the layer above, where it is safe to choose the
branch paths (which are geodesics of length K). We then use (iv) to show that
the branch sets in G are pairwise far apart.

The final step in the proof of Theorem 3.1 will then be to show that if a graph
does not contain K2,t as a fat minor, then it has a graph-partition satisfying
(i) to (iv) whose partition classes all have small radius. In fact, it will be more
convenient to exclude Θt as a fat minor, where Θt denotes the multi-graph on
two vertices with t parallel edges. Note that K2,t can be obtained from Θt by
subdividing each of its edges precisely once.

Lemma 3.4. There exists a function R : N2 → N satisfying the following. Let
t,K ∈ N with t ≥ 3, and let G be a graph with no K-fat Θt minor. Then G
admits an R(t,K)-bounded, honest graph-partition satisfying (i) to (iv) for some
ℓ ∈ N.

Together, Lemmas 3.3 and 3.4 imply Theorem 3.1:

Proof of Theorem 3.1. For t = 0, every graph excluding K2,0 as a fat minor has
bounded radius, and hence the assertion follows trivially. For t = 1, it is easy
to see that every graph excluding K2,1 as fat minor consists only of components
that each have bounded diameter, and hence the assertion follows trivially. For
t = 2, the result follows from (the proof of) the K3 case of Conjecture 1.1 (see
[13, Theorem 3.1]) and Lemma 2.1, where we note that in this case, G admits a
tree-partition over a tree T , which has no 2-connected minors. Hence, we may
assume t ≥ 3.

8



Since K2,t is not a K-fat minor of G, it follows by Lemma 2.1 that Θt is not
a 3K-fat minor of G. Let (H, (Vh)h∈V (H)) be the graph-partition provided by
Lemma 3.4 for G, t, 3K. Let J be a 2-connected (multi)-graph that is a minor
of H, and let J ′ be an ⊆-minimal subgraph of H which still contains J as a
minor. It is straight forward to check that J ′ is 2-connected. By Lemma 3.3,
J ′ is a K-fat minor of G, and so J is a K-fat minor of G.

4 Proof of Lemma 3.3

For every h ∈ V (H), recall that

V ↑
h := ∂↑

h(Rh − ℓ−K), and

V ↓
h := ∂↓

h(rh)

(see Figure 1). In particular, V ↑
h ∪V ↓

h is connected by (iii). Let also Li := Li
H,s,

for i ∈ N, denote the i-th layer of H with respect to its root s.
Let J be a 2-connected subgraph of G. Our aim is to find a K-fat model

of J in G, and we start with the branch paths. Let f = gh ∈ E(J) ⊆ E(H).
By (i), we may assume that h ∈ Li and g ∈ Li+1 for some i ∈ N. Since
H is honest, there exists an edge uv ∈ E(G) with u ∈ Vh and v ∈ Vg, and

hence V ↓
g ∩ Vh ̸= ∅ since rg > 0. We choose a V ↓

g –V
↑
h path Qf = qf0 . . . qfℓf

through Vh of length ℓf := dG[Vh](V
↓
g , V

↑
h ), which exists by (ii) (Figure 1). Note

that ℓf = ℓ + K − rh as V ↑
h = ∂↑

h(Rh − ℓ − K) and V ↓
g = ∂↓

g (rg) where ∂↓
g is

contained in the neighbourhood of Gih . In particular, ℓf ≥ K since rh ≤ ℓ.

We declare the initial segment Ef := qf0 . . . qfK of length K of Qf to be the

branch path corresponding to f . The remaining subpath Tf := qfK . . . qfℓf will
be called the tentacle of f , and we will make it part of the branch set below,
to ensure that each branch path attaches to the branch sets of its end-vertices
(see Figure 2).

To complete our construction of a model of J in G, we now define the branch
sets Ux as follows: for each x ∈ V (J), let Fx be the set of edges of J that are
incident with x and whose other endvertex lies in Lix+1, and let (see Figure 2)

Ux := V ↑
x ∪ V ↓

x ∪
⋃

e∈Fx

Te ⊆ Vx ∪ V ↓
x .

We claim that these Ux and Ee form the branch sets and branch paths of a
K-fat model of J in G.

By (iii) and because qeℓe ,∈ V ↑
h for all e ∈ Fx, the sets Ux are connected.

Since, by definition, every branch path Ee of an edge e = xy ∈ E(J), with
ix < iy, starts in qe0 ∈ V ↓

y ⊆ Uy and ends in qeK ∈ V (Txy) ⊆ Ux, it follows that
((Ux)x∈V (J), (Ee)e∈E(J)) is a model of J once we have shown that all pairs of
non-incident branch sets and/or paths are disjoint. We will prove that they are
even K-far apart in G, showing that our model of J is K-fat.

For this, let us first note that since J is 2-connected, it follows by (iv) that

dG(Vx, Vy) ≥ 2 ·max{rx, ry}+ 3K (∗)

for all x, y ∈ V (J) ⊆ V (H) with xy /∈ E(H). In particular,

dG(Vx ∪ V ↓
x , Vy ∪ V ↓

y ) ≥ 3K (∗∗)

9



Gix

Gix−1

Ux

Vx

V ↑
x

V ↓
x

Exy Exy′

Txy Txy′

Vy Vz Vy′

Figure 2: Depicted is an illustration of Ux, where y, y′, z ∈ V (J) and xy, xy′ ∈
E(J) and xz /∈ E(J).

for all x, y ∈ V (J) ⊆ V (H) with xy /∈ E(H).
Let e = xy, e′ = x′y′ ∈ E(J) be distinct edges of J . Since H is bipartite

by (i) and hence triangle-free, and because e ̸= e′, it follows that there are
a ∈ {x, y} and b ∈ {x′, y′} such that a ̸= b and ab /∈ E(H). Thus, by (∗∗) and
because Ee and Ee′ meet Va ∪ V ↓

a and Vb ∪ V ↓
b , respectively, we have that

dG(Ee, Ee′) ≥ dG(Va ∪ V ↓
a , Vb ∪ V ↓

b )− ||Ee|| − ||Ee′ || ≥ 3K −K −K = K.

Now let z ∈ V (J) and e = xy ∈ E(J) such that z /∈ {x, y}. Once again,
because H is triangle-free, there exists a ∈ {x, y} such that za /∈ E(H). Hence,
as above,

dG(Uz, Ee) ≥ dG(Vz ∪ V ↓
z , Ee) ≥ dG(Vz ∪ V ↓

z , Va ∪ V ↓
a )− ||Ee|| ≥ 3K −K ≥ K.

Finally, let x ̸= y ∈ V (J). If xy /∈ E(H), then, by (∗∗),

dG(Ux, Uy) ≥ dG(Vx ∪ V ↓
x , Vy ∪ V ↓

y ) ≥ 3K ≥ K,

where we used that Uz ⊆ Vz ∪ V ↓
z for all z ∈ V (J).

So we may assume that xy ∈ E(H). Then by (i) and without loss of gener-
ality, x ∈ Li−1 and y ∈ Li for some i ∈ N. By (ii), it follows that

dG(V
↑
x ∪ V ↓

x , Vy ∪ V ↓
y ) ≥ dG(V

↑
x , ∂

↓
y)− ry ≥ (ℓ+K)− ℓ = K.

It remains to show that dG(Te, Vy ∪ V ↓
y ) ≥ K for all edges e ∈ Fx. (Recall that

all tentacles of y are contained in Vy.) For this, let e = xz ∈ E(J) with e ∈ Fx be
given. So z ∈ Li. We split T e into an ‘upper part’ T e

1 := V (T e)∩BG(∂
↓
z , ry+K)

and a ‘lower part’ T e
0 := V (T e) \ BG(∂

↓
z , ry + K). Note that T e

1 is empty if
rz ≥ ry, which is in particular the case when y = z. We show separately that
both T e

1 , T
e
0 have distance at least K from Vy ∪ V ↓

y . Indeed, if T
e
1 is non-empty

(and hence z ̸= y), we have

dG(T
e
1 , Vy ∪ V ↓

y ) ≥ dG(BG(∂
↓
z , ry +K), Vy ∪ V ↓

y ) ≥ dG(Vz, Vy)− (ry +K)− ry

since ∂↓
z ⊆ Vz and V ↓

y ⊆ BG(Vy, ry). Hence, by (∗),

dG(T
e
1 , Vy ∪ V ↓

y ) ≥ (2ry + 3K)− ry −K − ry ≥ K.
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Moreover, by (ii) and since Qe is a V ↓
z –V

↑
x path of length dG(V

↓
z , V

↑
x ), we have

V (T e
0 ) ⊆ BG(V

↑
x , Rx − ry −K) . It follows that

dG(T
e
0 , Vy ∪ V ↓

y ) ≥ dG(V
↑
x , Vy ∪ V ↓

y )− (Rx − ry −K).

Since V ↓
y ⊆ BG(Vy, ry) and because dG(V

↑
x , Vy) ≥ Rx by (ii), it follows that

dG(T
e
0 , Vy ∪ V ↓

y ) ≥ dG(V
↑
x , Vy)− (Rx − ry −K)− ry = Rx − (Rx −K) = K.

This concludes the proof that dG(Ux, Uy) ≥ K for all x ̸= y ∈ V (J), and hence
completes the proof of Lemma 3.3.

Corollary 4.1. There is a polynomial-time algorithm that, given some K ∈ N,
a finite? graph G, an H-partition of G as in Lemma 3.3, and a 2-connected
subgraph J of H, returns a K-fat model of J in G.

Proof. The above proof is constructive, and provides an efficient procedure to
turn a subgraph J of H into a K-fat model of J in H.

5 Component structure and K-fat Θt minors

The rest of the paper is devoted to the proof of Lemma 3.4, for which we
will construct a graph-partition of our graph G recursively. At the beginning
of the n-th step of the recursion, we will already have constructed a graph-
partition Hn−1 of some induced subgraph Gn−1 of G. To proceed with the
construction, we need that the components C of G−Gn−1 satisfy two conditions.
First, their boundaries ∂GC should not be too large, so that we can partition
them into few sets of bounded radius. For this, we establish Lemma 5.2 below,
which finds a fat Θt minor otherwise. Furthermore, we need that not too many
components attach to the same bags of Hn−1. For this, we establish Lemma 5.3
below, which again finds a fat Θt minor otherwise.

We start with a simpler lemma needed for both aforementioned lemmas.

Lemma 5.1. Let G be a graph, and K ∈ N. Let X,Y ⊆ V (G) be connected
and dG(X,Y ) ≥ K. For every t ∈ N≥1, if BG(X,K)∩V (Y ) contains t vertices
which are pairwise at least 3K apart, then Θt is a K-fat minor of G.

Moreover, if G is finite, then there is a polynomial-time algorithm (for
fixed t) that given the above data either confirms that no such t-tuple of ver-
tices exists, or returns a K-fat Θt minor of G.

Proof. Assume thatBG(X,K)∩Y contains vertices u1, . . . , ut which are pairwise
at least 3K apart in G. For every i ∈ [t], let Pi be a ui–X path of length K.
Then V1 := Y and V2 := X form the branch sets and the Pi form the branch
paths of a K-fat model of Θt in G. Indeed, we have dG(V1, V2) = dG(X,Y ) ≥ K
by assumption, and dG(Pi, Pj) ≥ dG(ui, uj)−||Pi||− ||Pj || ≥ 3K−K−K = K.

For the second claim, it is straightforward to efficiently check if BG(X,K)∩Y
contains such a t-tuple, as there are at most nt tuples to consider. If such a
t-tuple is found, then the above proof provides an efficient procedure for finding
a K-fat Θt minor.
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Lemma 5.2. Let G be a graph, and let X ⊆ V (G) be connected. Let further
K ∈ N, and let C be a component of G − BG(X,K − 1). If Θt is not a K-fat
minor of G for some t ≥ 2, then ∂GC has at most t − 1 3K-near-components
and each of them has diameter less than 6K(t− 1).

Moreover, if G is finite, then there is a polynomial-time algorithm that either
confirms that C has the aforementioned properties, or returns a K-fat Θt minor
of G.

Proof. If ∂GC has at least t 3K-near components, then taking one vertex from
each 3K-near component yields t vertices in ∂GC which are pairwise at least
3K apart. Applying Lemma 5.1 (with X := X and Y := V (C)) yields that Θt

is a K-fat minor of G.
Now suppose that some 3K-near component C ′ of ∂GC has diameter at least

6K(t − 1), and pick vertices u, v ∈ V (C ′) with dG(u, v) ≥ 6K(t − 1). Since C ′

is a 3K-near component, there exists a 3K-near path P = x0 . . . xn in C ′ from
u = x0 to v = xn. Let W be an u–v walk in G obtained from P by adding
for every i ∈ {0, . . . , n − 1} an xi–xi+1 path of length at most 3K to P . Since
dG(u, v) ≥ 6K(t−1), the walk W has vertices u = y1, y2, . . . , yt−1, yt = v which
are pairwise at least 6K apart in G. By the definition of W , there exists for
every yj some xij in P , which hence lies in ∂GC, that has distance at most 3K/2
from yi. It follows that dG(xij , xiℓ) ≥ dG(yj , yℓ) − dG(yj , xij ) − dG(yℓ, xiℓ) ≥
6K − 3K = 3K. Thus, applying Lemma 5.1 (with X := X and Y := V (C)) to
the xij for j ∈ [t] yields that Θt is a K-fat minor of G.

For the second statement, it is again straightforward to compute and count
the 3K-near-components of ∂GC, and to calculate their diameters, and so we can
efficiently check whether C satisfies the desired properties. If not, and the num-
ber of these 3K-near-components is at least t, then invoking Lemma 5.1 as above
will return a K-fat Θt minor. Finally, if one of these 3K-near-components C ′

has diameter at least 6K(t− 1), then the above proof yields an efficient proce-
dure for finding a t-tuple of vertices in C ′ pairwise at distance at least 3K, and
invoking Lemma 5.1 again returns a K-fat Θt minor.

Another consequence of Lemma 5.1 is

Lemma 5.3. Let K, t, n ∈ N with t ≥ 3 and n ≤ t − 1, and let G be a graph
with no K-fat Θt minor. Let X1, X2, . . . , Xn be connected subsets of V (G) that
are pairwise at least 3K apart and set V ′ :=

⋃
i∈[n] BG(Xi,K − 1). Let C be the

set of components of G − V ′ that each have neighbours in at least two distinct
BG(Xi,K − 1). Then there is no set of more than (t − 1)3(t − 2) vertices of⋃

C∈C ∂GC pairwise at distance at least 3K.
Moreover, if G is finite, then there is a polynomial-time algorithm that either

confirms that C has the aforementioned property, or returns a K-fat Θt minor
of G.

Proof. Suppose for a contradiction that there is a set U ⊆
⋃

C∈C ∂GC of size at
least (t − 1)3(t − 2) + 1 such that dG(u, u

′) ≥ 3K for all u, u′ ∈ U . For every
u ∈ U , let Cu ∈ C be the component of G− V ′ containing u.

By the pigeonhole principle and because n ≤ t − 1, there is i ∈ [n] and a
subset U ′ ⊆ U of size at least (t − 1)2(t − 2) + 1 such that every u ∈ U ′ has a
neighbour in BG(Xi,K− 1). Further, by the same argument and because every
Cu ∈ C has neighbours in at least two distinct BG(Xj ,K − 1), it follows that
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there is j ̸= i ∈ [n] and a set U ′′ ⊆ U ′ of size at least (t− 1)2 + 1 such that for
every u ∈ U ′′ the component Cu has a neighbour in BG(Xj ,K − 1). Moreover,
by Lemma 5.1 (applied to X := Xi and Y := V (Cu) for every u ∈ U ′′) and
because Θt is not a K-fat minor of G, we deduce that there is a subset W ⊆ U ′′

of size at least t such that Cu ̸= Cu′ for all u ̸= u′ ∈ W .
We now use W to show that Θt is a K-fat minor of G, which contradicts

our assumptions and thus concludes the proof. For every u ∈ W pick a u–
Xi path Qu of length K, which exists since u ∈ NG(BG(Xi,K − 1)). Then
by the choice of W , the paths Qu form the branch paths and V1 := Xi and
V2 := BG(Xj ,K − 1)∪

⋃
u∈W V (Cu) form the branch sets of a model of Θt (see

Figure 3). We claim that this model is K-fat. Indeed, we have

Xi = V1
Xj

BG(Xi,K − 1) BG(Xj ,K − 1)

V2

Cw

w ∈ W

Qw

Figure 3: An illustration of the fat Θt minor in the proof of Lemma 5.3. The
green and blue sets are its branch sets, and the orange paths are its branch
paths.

dG(Qu, Qu′) ≥ dG(u, u
′)− ||Qu|| − ||Qu′ || ≥ 3K −K −K = K,

since u, u′ ∈ U and hence dG(u, u
′) ≥ 3K by the assumption on U . Moreover,

dG(V1, BG(Xj ,K)) ≥ dG(Xi, Xj)−K ≥ 3K −K > K

by the assumption on the Xk. Finally, we have dG(V1, Cu) ≥ K for all u ∈ W
since Cu is a component of G− V ′, which concludes the proof.

For the second statement, it is straightforward to compute the set C of
components of G − V ′ that each have neighbours in at least two distinct sets
BG(Xi,K − 1), and to check if

⋃
C∈C ∂GC has such a t′-tuple of vertices where

t′ := (t− 1)3(t− 2) + 1, as there are at most nt′ tuples to consider. If such a t′-
tuple is found, then the above proof provides an efficient procedure for finding a
K-fat Θt minor (where it might find the K-fat Θt minor by invoking Lemma 5.1,
which is the only point in the proof (except for the contradiction in the end)
where we used the assumption that Θt is not a K-fat minor of G).

6 A merging lemma

Recall that for the proof of Lemma 3.4 we will construct a graph-partition
of a graph G recursively. After each step, we will have constructed a graph-
partition Hn of some subgraph of G. In the next step, we will consider, for
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some suitable K ′ ∈ N, the K ′-near-components of the boundaries ∂GC of the
remaining components C as candidates for the new partition classes which we
aim to add to Hn. However, some of the near-components might be too close
to each other for (iv), in which case we combine them into one new partition
class. The following lemma formalises this merging procedure.

Given a set U and partitions P,Q of U , we say that P is a coarsening of Q
if every B ∈ Q is a subset of some A ∈ P.

Lemma 6.1. Let n ∈ N, let G be a graph, and let Q be a set of at most n
disjoint subsets of V (G). (We think of Q as a partition of

⋃
Q.) Then for

every d, r ∈ N, there exist some L ∈ N with r ≤ L ≤ r + ⌊nd
2 ⌋, and a

coarsening P of Q such that

(i) for every A ∈ P and every u, v ∈ A there is a sequence (Bi)i∈[k] ⊆ Q with
Bi ⊆ A for all i ∈ [k] such that u ∈ B1, v ∈ Bk and dG(Bi−1, Bi) ≤ 2L
for all i ∈ {2, . . . , k},

(ii) dG(A,A′) ≥ 2L+ d for all A ̸= A′ ∈ P, and

(iii) if diamG(B) ≤ D for all B ∈ Q and some D ∈ N, then every A ∈ P has
diameter at most nD + (n− 1)(2r + nd).

Moreover, if G is finite, then P can be computed in polynomial time.

Proof. We first construct a coarsening P satisfying (i) and (ii), and then verify
that P also satisfies (iii). We construct P recursively as follows. Set P0 := Q
and L0 := r, and assume that we have already defined Pm for some m < n such
that Pm has n−m elements and satisfies (i) with Lm := r+ ⌊md

2 ⌋ instead of L.
If Pm also satisfies (ii) with Lm instead of L, then P := Pm and L := Lm are
as desired. In particular, if m = n − 1, then |Pm| = 1, and hence Pm satisfies
(ii) trivially.

Otherwise, pick two sets A,A′ ∈ Pm with dG(A
′, A′) < 2Lm + d. Then

Pm+1 := (Pm \ {A,A′})∪ {A∪A′} has n−m− 1 elements, and it still satisfies

(i) with Lm+1 := r + ⌊ (m+1)d
2 ⌋ ≥ Lm + ⌊d

2⌋ instead of L. Indeed, let a ∈ A and
a′ ∈ A′ such that dG(a, a

′) < 2Lm+d. Then for every u ∈ A and v ∈ A′ we can
concatenate the sequences given by (i) for u, a ∈ A and a′, v ∈ A′, which yields
a sequence for u, v ∈ A∪A′ as in (i). This completes the construction of P and
the verification that P satisfies (i) and (ii).

To check (iii), let A ∈ P, and assume that diamG(B) ≤ D for some D ∈ N
and all B ∈ Q. Then

diamG (A) ≤ nD + (n− 1)2L.

by picking u, v ∈ A, and a sequence of B′
is as in (i), and noting that we have at

most n such B′
is. The right hand side is at most nD + (n− 1)(2r + nd) by our

bound on L.

Since this recursive construction terminates after at most n steps, each of
which only compares distances between pairs of at most n sets of vertices, it
can be carried out by a polynomial-time algorithm.
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7 Proof of Lemma 3.4

We can now prove Lemma 3.4. For every t,K ∈ N with t ≥ 3 set2

N(t) :=

⌈
1

2
(t− 1)3 · (t− 2)

⌉
,

L(t,K) := ⌈3K/2⌉+N(t) · 3K,

L′(t,K) := N(t) ·
(
4 · L(t,K) + 5K

)
+ 2 · L(t,K) + 3K,

R0(t,K) := 3t12K + 43t9K, and

R(t,K) := R0(t,K) + 2L′(t,K) ∈ O(t12K).

We prove Lemma 3.4 with the function R(t,K) and ℓ := L(t,K).

Let t,K ∈ N, and let G be a graph with no K-fat Θt minor. By considering
each component of G individually, we may assume that G is connected.

We construct the desired graph-partition H = (H, (Vh)h∈V (H)) of G recur-
sively ‘layer by layer’, i.e. the nodes that we add to H in the n-th step of the
construction will form the n-th layer Ln := Ln

H,s of H with respect to the root s
of H, which we specify in the first construction step.

Pick o ∈ V (G) arbitrarily. We initialize H0 := ({s}, ∅) on a single vertex s,
its root, and set Vs := BG(o, L

′(t,K)). Then H0 = (H0, (Vs)) is an honest
graph-partition of G0 = G[Vs]. Moreover, L0 = {s}.

Having defined graph-partitions Hi of Gi for every i ≤ n, we proceed to
construct Hn+1. The main effort will go into finding a suitable partition P of
NG(G

n) into sets of diameter at most R0(t,K) (whose construction we post-
pone for later). The new vertices of Hn+1 − Hn will be in bijection with the
elements of P. For each A ∈ P, we introduce a vertex hA, fix a ‘height’
RA = RhA

≤ L′(t,K), and let VhA
:= BG−Gn(A,RA) (thus ensuring that

VhA
is level, i.e. (ii) holds). We choose P and the heights RA so that the

VhA
are pairwise disjoint, and there is no edge of G between VhA

and VhB
for

A ̸= B ∈ P (in fact, the VhA
will be pairwise far apart; see (2) below). We

add an edge between nodes h, h′ ∈ V (Hn+1) whenever there is an edge in G
between Vh and Vh′ . By the last property, Ln+1 = V (Hn+1 − Hn) is inde-
pendent. Moreover, Ln = V (Hn − Hn−1) separates Ln+1 from all Li with
i ≤ n− 1 since the partition classes of nodes h ∈ Ln contain the neighbourhood
of Gn−1. Hence, V (Hn+1 − Hn) is indeed the (n + 1)st layer Ln+1 of Hn+1.
By definition, Hn+1 = (Hn+1, (Vh)h∈V (Hn+1)) is an honest graph-partition of
Gn+1 = G[

⋃
h∈V (Hn+1) Vh].

If NG(G
n) is empty at some step n, which happens precisely when G has

finite diameter, then the process terminates. This is the only difference between
the finite and infinite diameter case throughout our proof.

We let H :=
⋃

n∈N Hn. Then H := (H, (Vh)h∈V (H)) is an honest graph-
partition of

⋃
n∈N Gn, which is equal to G since G is connected and each Gn+1

contains the neighbourhood of Gn. By the comment above, H satisfies (i).

Furthermore, H satisfies (ii) by the definition of VhA
and because ∂↓

hA
= A.

Moreover, as every A ∈ P has diameter at most R0(t,K) and RA ≤ L′(t,K),
every partition class VhA

of H has diameter at most R0(t,K) + 2L′(t,K) =
R(t,K), and hence H is R(t,K)-bounded.

2We remark that we rounded the function R0(t,K) up to make it more readable.
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Thus, it only remains to specify P and the heights RA, and check that (iii)
and (iv) hold. We repeat these properties here: for all h ∈ V (H)

(1) ∂↑
h(Rh − ℓ−K) ∪ ∂↓

h(rh) is connected.

(We will specify the ‘depths’ rh later on.) Recall that ∂↓
h is the set of all vertices

of Vh that have a neighbour in Gih−1; in particular, ∂↓
hA

= A for every node

hA ∈ Ln+1 by definition. We need the following modified version of (iv):

(2) for all non-adjacent g ̸= h ∈ V (H) either dG(Vg, Vh) ≥ 2·max{rg, rh}+3K
or there is a node x ∈ V (H) such that Vx separates Vg, Vh in G.

(Note that (2) immediately implies (iv) since H is honest.)
For our construction we need to inductively ensure that (1) and (2) hold for

all g, h ∈ V (Hn) and that the following property is true:

(3) Every component C of G−Gn−1 meets at most t− 1 partition classes Vh

of Hn.

Letting Rs := L′(t,K), rs := 0, and G−1 := ∅ clearly satisfies (1) to (3) for
n = 0.

For every component Z of G − Gn−1 let DZ be the set of all components
of G − Gn that are contained in Z and that have neighbours in at least two
distinct partition classes of Hn. Recall that C(G−Gn) is the set of components
of G − Gn. Let R be the partition of C(G − Gn) comprising the DZ as above
and a singleton {C} for each component C of G−Gn that is not in any DZ (i.e.
that has neighbours in exactly one partition class of Hn) (see Figure 4).

Gn−1

Gn

NG(G
n)

R

Z

DZ

BDZ

C

∂C BC
i

Figure 4: A visualisation of the partition R of C(G−Gn) (in green, with dashed
lines). Every partition class in R is either a singleton comprising a component
that has only neighbours in exactly one partition class of Hn (indicated in grey),
or it is DZ for some component Z of G−Gn−1 (indicated in light/dark blue).

Note that R naturally induces a partition R of NG(G
n), by letting R :={

∂G(
⋃
D) | D ∈ R

}
. We will obtain P by refining R.

For every C ∈ C(G − Gn), let BC
1 , . . . , BC

mC
be the 3K-near components

of ∂GC. We group these 3K-near components together over R by considering

BD := {BC
i : C ∈ D, i ≤ mC} for every D ∈ R.

Set B :=
⋃

D∈R BD, and note that
⋃

B = NG(G
n). Our final partition P of

NG(G
n) will be a refinement of R and a coarsening of B.
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We may think of B as candidate for the partition P of NG(G
n), and the BC

i

as candidates for the new partition classes Vh that we want to add to Hn. By
taking rh := 0 for all such new Vh (and Rh = 0), they would already satisfy
(2). However, we need that they also satisfy (1). But since the BC

i are only
3K-near components, they need not be connected. To make them connected,
we might have to increase the heights Rh and ‘depths’ rh to 3K/2. By doing
so, the BC

i might no longer satisfy (2), in which case we have to merge BC
i ’s

that are to close. For this, we will employ Lemma 6.1, which ensures that the
merged sets are far apart and have bounded diameters (see Figure 5). In order

Gn

N(Gn)≥ 3K

3K
2

≥ 3K< 3K

LD

LD

QDBD

≤ D1(= D1(t,K)) ≤ D1

Figure 5: Indicated in pink is the partition BD, whose partition classes BC
i are

pairwise at least 3K far apart. The grey boxes around the BC
i are connected,

but they no longer need to be pairwise 3K far apart. Applying Lemma 6.1
yields a coarsening QD of BD such that the black boxes (of height LD) around
the (green) partition classes of QD are connected and pairwise at least 3K far
apart. Moreover, the partition classes in QD have bounded diameter.

to apply Lemma 6.1, we need to ensure that each BD contains only boundedly
many elements all of bounded diameter. More precisely, we claim that for all
D ∈ R

BD contains at most (t− 1)3(t− 2) elements, (∗)

(this bound will play the role of n in our application of Lemma 6.1), and

diamG(B) ≤ 6K(t− 1) for every B ∈ BD. (∗∗)

For this, let C ∈ C(G − Gn). Then applying Lemma 5.2 to C (with some X
that we specify in the next sentence) yields that every 3K-near component BC

i

of ∂GC has diameter at most 6K(t−1) in G and that mC ≤ t−1; in particular,
(∗∗) holds. For this, let X be the component of Y := Gn −BG(G−Gn,K − 1)
which contains G0. (Recall that G0 = G[Vs] = G[BG(o, L

′(t,K))], and hence
G0 is connected.) For the application of Lemma 5.2, we need to check that C
is a component of BG(X,K − 1), which we do next. Since C is connected and
avoids X, it suffices to show that NG(C) ⊆ BG(X,K − 1). Pick v ∈ NG(C),
and let w ∈ Y be a vertex with distance precisely K − 1 from v. We need to
show that w ∈ X. Since Y ⊆ Gn, there are i ≤ n and h ∈ Li such that w ∈ Vh.
Thus w ∈ BG−Gi−1(∂↓

h, Rh) by the definition of Vh, and hence there is an v–∂↓
h

path P in G[Vh] of length dG−Gi−1(v, ∂↓
h). In particular, P is contained in Y

as P is a subpath of an v–∂↓
h path of length dG−Gi−1(v, ∂↓

h) +K − 1, of which
only the first K − 1 vertices (those not in P ) are not contained in Y . Since all

vertices in ∂↓
h send an edge to Gi−1 by the definition of ∂↓

h, there is a path in Y
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from w to Gi−1 (note that V (Gi−1) ⊆ Y ). Inductively applying this argument
thus yields that there is a w–G0 path in Y , and thus w ∈ X as claimed.

To complete the proof of (∗), note that if D = {C} for some C ∈ C(G−Gn),
then (∗) follows immediately from mC ≤ t − 1. Otherwise, D = DZ for some
component Z ∈ C(G−Gn−1). We then obtain (∗) by applying Lemma 5.3 with

the sets Xi being the sets ∂↑
h(Rh − K − 1) ∪ ∂↓

h(rh) for nodes h ∈ Ln whose
partition class Vh has a neighbour in some C ∈ D (which implies that D = DZ

is a subset of the set C from Lemma 5.3). For this, note that there are at most
t− 1 such Vh by (3) and because the components in D = DZ are all contained
in D. Moreover, note that the Xi are connected by (1) and are pairwise at least
3K apart by (2).

Having established the conditions (∗) and (∗∗), we can now apply Lemma 6.1
to each BD,D ∈ R, with the parameters being n := |BD| ≤ 2N(t), r := ⌈3K/2⌉,
d := 3K and D := 6K(t− 1). This merging yields a coarsening QD of BD and
some LD ≤ ℓ (see Figure 5) such that every A ∈ QD has diameter at most
D1 := nD + (n − 1)(2r + nd) (by (iii)) and such that BG(A,LD) is connected
(by (i) and because BG(B, ⌈3K/2⌉) is connected for every B ∈ BD and because
LD ≥ r = ⌈3K/2⌉). Moreover, (by (ii)) for all A,A′ ∈ QD

dG(A,A′) ≥ 2LD + 3K. (2)

Set Q :=
⋃

D∈R QD, and note that
⋃
Q =

⋃
B = NG(G

n).
The partition Q is our new candidate for P, and the LD are our candidates

for the ‘heights’ RA. They would satisfy (3) and a variant of (2) (see (2)), and
they would satisfy a variant of (1) with ‘depths’ rh := LD whereby we need the
whole height for connectedness, i.e. for all A ∈ QD we have that

BG(A,LD) is connected, (1′)

which we have proven above. Note that BG(A,LD) would be equivalent to

∂↑
h(Rh) ∪ ∂↓

h(rh) if we would set Rh, rh := LD and Vh := BG−Gn(A,Rh). To
achieve (1), we need to add a ‘buffer zone’ of height ℓ+K, that is, we need to
increase the ‘height’ RA for each A ∈ Q by ℓ+K. This increase in height might
however violate (2) even if (2) was satisfied earlier, and therefore we need to
perform another round of merging, namely to merge any sets in some QD that
violate (2), i.e. which are two close together (see Figure 6). This merging will
ensure (2), and (1) will follow from (1′), as we will see below.

To perform the aforementioned merging, we now apply Lemma 6.1 again,
to each QD with D ∈ R. More precisely, we apply Lemma 6.1 to QD in the
subgraph G − Gn with n′ := |QD| ≤ 2N(t), r′ := ℓ + 2K, d′ := 4ℓ + 5K and
D′ := D1. This yields a coarsening PD of QD and some L′

D ≤ L′(t,K)− ℓ−K
with L′

D ≥ r′ (see Figure 6). This new L′
D is the ‘height’ that we need to ensure

connectedness as in (1′) (or in (1)), i.e. for all A ∈ Pd it follows by (1′) and
Lemma 6.1 (i) that

BG−Gn(A,L′
D) ∪BG(A,LD) is connected. (1′′)

Moreover, by Lemma 6.1 (ii), for every A ̸= B ∈ PD,

dG−Gn(A,A′) ≥ 2L′
D + 4ℓ+ 5K. (△)
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Gn

N(Gn)

< 3K

ℓ + K

ℓ+K ≥ 3K

≥ 3K

L′
D

LD

PDQD

≤ R0(t,K) ≤ R0(t,K)

Figure 6: Indicated in green is the partition QD. The grey boxes around its
partition classes (of height LD) are connected and pairwise at least 3K far apart,
but to ensure (1), we need to add a ‘buffer zone’ of height ℓ+K (indicated with
dashed lines). These taller boxes need no longer be pairwise 3K far apart.
Applying Lemma 6.1 yields a coarsening PD of QD such that the black boxes
(of ‘depth’ LD and height L′

D) around the (blue) partition classes of PD are
connected, and such that they are still 3K far apart even after adding a ‘buffer
zone’ of height ℓ +K. Moreover, the partition classes in QD have diameter at
most R0(t,K).

Setting P :=
⋃

D∈R PD, we have defined our desired partition of NG(G
n).

Note that P is a refinement of R and a coarsening of B. Moreover, every PD is
a coarsening of BD. Since

⋃
BD =

⋃
C∈D ∂GC, every A ∈ P is contained in the

union of the boundaries of components in some DA ∈ R.
For every A ∈ P, we set RA := L′

DA
+ ℓ + K and rA := LDA

. Note that
2ℓ+3K = r′ + ℓ+K ≤ RA ≤ L′(t,K) and 0 < r ≤ rA ≤ ℓ. This completes the
construction at step n+ 1.

It remains to check that every A ∈ P has diameter at most R0(t,K) and
that A and the RA, rA satisfy (1) to (3). For every A ∈ A we have

diamG(A) ≤ n′D′ + (n′ − 1)(2r′ + n′d′) ≤ R0(t,K)

by Lemma 6.1 (iii).

To prove (1), let A ∈ P and h := hA. By the choice of Rh, rh we have
Rh = L′

DA
+ ℓ+K and rh = LDA

, and hence (1) follows from (1′′).

To prove (3), let C be a component of G − Gn. Since PD is a coarsening
of BD and P is the union over all PD with D ∈ R, there are at most mC

elements of P that meet C. By the definition of the new partition classes VhA

as BG−Gn(A,RA), it follows that at most mC partition classes of Hn+1 meet
C. Since mC ≤ t− 1 as shown earlier, this concludes the proof of (3).

To prove (2), let g ̸= h ∈ V (Hn+1) be non-adjacent. By (2) of Hn, it suffices
to consider the case where g ∈ Ln+1 = V (Hn+1 −Hn). If h ∈ V (Hn−1), then

dG(Vg, Vh) ≥ dG(G−Gn, Gn−1) ≥ min{Rh′ : h′ ∈ Ln}
≥ 2ℓ+ 3K ≥ 2 ·max{rg, rh}+ 3K.

(a)

where the second inequality holds by the definition of the Vh′ , the third in-
equality holds because Rh′ ≥ 2ℓ + 3K, and the last inequality holds because
rg, rh ≤ ℓ.
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Now assume h ∈ Ln = V (Hn −Hn−1), and let P be a Vg–Vh path in G of
length dG(Vg, Vh). As gh /∈ E(Hn+1) and Ln+1 is independent, P meets either
G−Gn+1 or it meets a bag Vh′ of some h′ ̸= h ∈ Ln (see Figure 7). In the former
case, we obtain dG(Vg, Vh) ≥ dG(G−Gn+1, Gn) ≥ 2 ·max{rg, rh}+ 3K by the
same argument as in (a). In the latter case, since Ln is independent, P has to
meet either Gn−1, and we are done as before, or P meets a bag Vg′ of some g′ ̸=
g ∈ Ln+1 (see Figure 7). Then dG(Vg, Vh) ≥ max{dG(Vg, Vg′), dG(Vh, Vh′)} ≥
2 · max{rg, rg′ , rh, rh′} + 3K by (2), once we have proved that (2) holds for
g, g′ ∈ Ln+1.

Vh

Vg

Vh′

Vg′

P

P

P
Gn−1

Gn

Gn+1

Figure 7: Depicted is the case where g ∈ Ln+1 and h ∈ Ln. The light blue path
meets both Vh′ and Vg′ . The dark blue paths meet either G−Gn+1 or Gn−1.

Hence, it remains to consider the case where g ̸= h ∈ Ln+1, i.e. g = hA and
h = hB for some A,B ∈ P. Let us first assume that DA ̸= DB . If at least
one of DA,DB is of the form {C} for some C ∈ C(G − Gn), then VhA

, VhB

can be separated in G by the partition class Vx of the (unique) node h ∈ Ln

with NG(C) ⊆ Vh. Otherwise, VhA
, VhB

are contained in distinct components
of G−Gn−1. Hence, any VhA

–VhB
path meets Gn−1, and so

dG(VhA
, VhB

) ≥ dG(G−Gn, Gn−1) ≥ 2 ·max{rhA
, rhB

}+ 3K as in (a).
Thus, we may assume DA = DB . Let P be a VhA

–VhB
path in G of length

dG(VhA
, VhB

). If P has a subpath that lies in G − Gn and starts in VhA
and

ends in VhB′ for some B′ ̸= A ∈ P with DB′ = DA, then

dG(VhA
, VhB

) ≥ dG−Gn(VhA
, VhB′ ) ≥ dG−Gn(A,B′)−RhA

−RhB′

and hence, by (△) and the definition of RhA
, RhB

,

dG(VhA
, VhB

) ≥ (2L′
DA

+ 4ℓ+ 5K)− 2 · (L′
DA

+ ℓ+K)

≥ 2ℓ+ 3K ≥ 2 ·max{rhA
, rhB

}+ 3K.

Otherwise, since Ln+1 is independent, P has a subpath that starts in A and
ends in B′ for some B′ ∈ P with DB′ = DA. Then by (2)

dG(VhA
, VhB

) ≥ dG(A,B′) ≥ 2LDA
+ 3K = 2 ·max{rhA

, rhB
}+ 3K.

This establishes (2) and hence concludes the proof.
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8 The approximation algorithm

Note that our proof of Lemma 3.4 is constructive (and so are any lemmas it
relies on), and therefore we will be able to turn it into an algorithm that approx-
imates, to a constant factor, the optimal distortion αt(G) of any embedding of a
finite graph G into a K2,t-minor-free graph in polynomial time, thereby proving
Corollary 1.3:

Proof of Corollary 1.3. Let n := |V (G)|. For each K = 1, 2, . . . n, our algorithm
attempts to carry out the construction of H and the H-partition of G as in
the proof of Lemma 3.4, without knowing in advance whether G has a K-fat
K2,t minor. Note that the only occasions in that proof where we used the
assumption that G has no such minor were when invoking Lemmas 5.2 and 5.3.
Thus, either the attempt will output such an H, or one of these calls to the
aforementioned Lemmas will return a K-fat K2,t minor model in G, in which
case we say that the attempt failed. In the former case, where our algorithm
constructs a graph H and an H-partition of G, it then checks whether H is K2,t-
minor-free (which can be done in polynomial time [17]). If H is K2,t-minor-free,
then we say that the attempt was successful . If not, then the attempt failed,
and invoking Corollary 4.1 again returns a K-fat model of K2,t in G.

Our algorithm returns the smallest value Kmin of K ≤ n for which this pro-
cedure succeeds as an approximate value for αt(G). Note that Kmin exists since
G cannot have a n-fat K2,0 minor. Along with Kmin, the algorithm can return
a witness: we start with the graph H and the embedding of G into H, defined
by mapping each v ∈ V (G) into its partition class Vh ∋ v, and then modify
H and the embedding using the star trick mentioned before the statement of
Corollary 1.3 to eliminate the additive error.

We claim that Kmin is within a constant factor of αt(G). Indeed, our Theo-
rem 1.2 (and the remark thereafter) guarantees that the multiplicative distortion
of G into H, which is K2,t-minor-free by definition, is at most C · Kmin for a
universal constant C. If Kmin > 1 then our procedure failed for K = Kmin − 1,
and therefore as mentioned above it will identify a (K−1)-fat K2,t minor model
M in G. It is not hard to see that such a model implies that αt(G) is at least
c · (Kmin − 1) for a small universal constant c [9, Proposition 3] (the precise
value of which depends on the convention chosen in the definition of multiplica-
tive distortion). Our algorithm outputs M as a witness for this lower bound on
αt(G). If on the other hand Kmin = 1, then as above we deduce that αt(G) ≤ C,
and so we do not need a lower bound or a witness, as we can use the trivial
bound αt(G) ≥ 1.

Note that our algorithm has the pleasant property that if αt(G) = 1, equiv-
alently, if G is K2,t-minor-free, then the output of our algorithm is 1.

Both the running time of our algorithm, and the approximation constant we
obtained, increase with t. We do not know to what extent this is necessary.

Our Corollary 1.3, along with analogous results of [1], and remarks of [9],
motivates the following problem related to the coarse Menger conjecture of
[5, 13]. Given a finite graph G, and S, T ⊂ V (G), and n ∈ N, let MMn(G,S, T )
denote the maximum K ∈ N such that there is an n-tuple of S–T paths in G
pairwise at distance at least K.
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Problem 8.1. Is it true that for every n ≥ 2, there are universal constants
C, c > 1, such that:

(i) there is an efficient algorithm that, given G,S, T as above, approximates
MMn(G,S, T ) up to a multiplicative factor of C; and

(ii) approximating MMn(G,S, T ) up to a multiplicative factor of c is NP-hard.

We remark that the results of [5, 13] that the coarse Menger conjecture is
true for n = 2 imply that (i) holds for n = 2: the algorithm can output the
smallest radius of a ball in G separating S from T . This trivially lower-bounds
MM2(G,S, T ), and the aforementioned result states that it is also an upper
bound up to a universal constant C.

If we require the exact rather than an approximate value for MMn(G,S, T ),
the problem is NP-hard as proved by Baligács and MacManus[7].

We do not know whether the analogue of (ii) holds for αt(G).
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