Analytic functions in bond percolation

Agelos Georgakopoulos

WARWICK

Heraklion, 7/9/18

Joint work with Christoforos Panagiotis

The setup

Bernoulli bond percolation on an infinite graph, i.e.

Each edge

-present with probability *p*, and

-absent with probability 1 - p independently of other edges.

$$p_c := \inf\{p \mid \Pr(\exists \text{ infinite cluster}) = 1\}$$

= $\sup\{p \mid \Pr(\exists \text{ infinite cluster}) = 0\}$

Classical era:

Introduced by physicists Broadbent & Hammersley '57

 p_c (square grid) = 1/2 (Harris '59 + Kesten '80)

Many results and questions on phase transitions, continuity, smoothness etc. in the '80s:

Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand, Newman, Schulman, Slade, Zhang ... (apologies to many!)

Classical era:

Introduced by physicists Broadbent & Hammersley '57

 p_c (square grid) = 1/2 (Harris '59 + Kesten '80)

Many results and questions on phase transitions, continuity, smoothness etc. in the '80s:

Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand, Newman, Schulman, Slade, Zhang ... (apologies to many!)

Thought of as part of statistical mechanics

Modern era:

Benjamini & Schramm '96 popularised percolation on groups 'beyond \mathbb{Z}^{d^\prime}

Modern era:

Benjamini & Schramm '96 popularised percolation on groups 'beyond \mathbb{Z}^{d} '

... for example, percolation can characterise amenability:

Theorem (← Aizenman, Kesten & Newman '87, ⇒ Pak & Smirnova-Nagnibeda '00)

A finitely generated group is non-amenable iff it has a Cayley graph with $p_c < p_u$.

Modern era:

Benjamini & Schramm '96 popularised percolation on groups 'beyond \mathbb{Z}^{d} '

... for example, percolation can characterise amenability:

Theorem (← Aizenman, Kesten & Newman '87, ⇒ Pak & Smirnova-Nagnibeda '00)

A finitely generated group is non-amenable iff it has a Cayley graph with $p_c < p_u$.

See the textbooks [Lyons & Peres '15], [Pete '18+] for more.

Negative Probability

'Trying to think of negative probabilities gave me cultural shock at first...'

—Richard Feynman, from the paper *Negative Probability (1987).*

Back to classics: analyticity below p_c

$$\chi(p) := \mathbb{E}_p(|C(o)|),$$
 i.e. the expected size of the component of the origin o .

Theorem (Kesten '82)

 $\chi(p)$ is an analytic function of p for $p \in [0, p_c)$ when G is a lattice in \mathbb{R}^d .

Back to classics: analyticity below p_c

$$\chi(p) := \mathbb{E}_p(|C(o)|),$$
 i.e. the expected size of the component of the origin o .

Theorem (Kesten '82)

 $\chi(p)$ is an analytic function of p for $p \in [0, p_c)$ when G is a lattice in \mathbb{R}^d .

Proved by extending p and $\chi(p)$ to the complex numbers, and using classical complex analysis (Weierstrass).

Some complex analysis basics

Theorem (Weierstrass): Let $f = \sum f_n$ be a series of analytic functions which converges uniformly on each compact subset of a domain $\Omega \subset \mathbb{C}$. Then f is analytic on Ω .

Weierstrass M-test: Let (f_n) be a sequence of functions such that there is a sequence of 'upper bounds' M_n satisfying

$$|f_n(z)| \le M_n, \forall x \in \Omega$$
 and $\sum M_n < \infty$.

Then the series $\sum f_n(x)$ converges uniformly on Ω .

Some complex analysis basics

Theorem (Weierstrass): Let $f = \sum f_n$ be a series of analytic functions which converges uniformly on each compact subset of a domain $\Omega \subset \mathbb{C}$. Then f is analytic on Ω .

Weierstrass M-test: Let (f_n) be a sequence of functions such that there is a sequence of 'upper bounds' M_n satisfying

$$|f_n(z)| \le M_n, \forall x \in \Omega$$
 and $\sum M_n < \infty$.

Then the series $\sum f_n(x)$ converges uniformly on Ω .

Theorem (Aizenman & Barsky '87)

In every vertex-transitive percolation model, $\Pr_{p}(|C| > n) \le c_{p}^{-n}$, for every $p < p_{c}$ and some $c_{p} > 1$.

Conjectures on the percolation probability

$$\theta(p) := \Pr_p(|C| = \infty),$$

i.e. the percolation probability.

148 Geoffrey Grimmett

Fig. 1.1. It is generally believed that the percolation probability $\theta(p)$ behaves roughly as indicated here. It is known, for example, that θ is infinitely differentiable except at the critical point p_c . The possibility of a jump discontinuity at p_c has not been ruled out when $d \geq 3$ but d is not too large.

Open problem:

Is $\theta(p)$ analytic for $p > p_c$?

Appearing in the textbooks Kesten '82, Grimmett '96, Grimmett '99.

• θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?

- θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?
- $p_c = p_{\mathbb{C}}$ on all planar lattices. –previously open for all graphs; C^{∞} known for \mathbb{Z}^d

- θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?
- $p_c = p_{\mathbb{C}}$ on all planar lattices. –previously open for all graphs; C^{∞} known for \mathbb{Z}^d
- $p_c = p_{\mathbb{C}}$ for continuum percolation in \mathbb{R}^2 . -asked by Last et.al '16; C^{∞} known

- θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?
- $p_c = p_{\mathbb{C}}$ on all planar lattices. –previously open for all graphs; C^{∞} known for \mathbb{Z}^d
- $p_c = p_{\mathbb{C}}$ for continuum percolation in \mathbb{R}^2 . -asked by Last et.al '16; C^{∞} known
- $p_{\mathbb{C}}$ < 1 on all finitely presented Cayley graphs. -proved for \mathbb{Z}^d by Braga et.al. '02

- θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?
- $p_c = p_{\mathbb{C}}$ on all planar lattices. –previously open for all graphs; C^{∞} known for \mathbb{Z}^d
- $p_c = p_{\mathbb{C}}$ for continuum percolation in \mathbb{R}^2 . -asked by Last et.al '16; C^{∞} known
- $p_{\mathbb{C}} < 1$ on all finitely presented Cayley graphs. -proved for \mathbb{Z}^d by Braga et.al. '02
- $p_{\mathbb{C}}$ < 1 on all non-amenable graphs.

- θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?
- $p_c = p_{\mathbb{C}}$ on all planar lattices. –previously open for all graphs; C^{∞} known for \mathbb{Z}^d
- $p_c = p_{\mathbb{C}}$ for continuum percolation in \mathbb{R}^2 . -asked by Last et.al '16; C^{∞} known
- $p_{\mathbb{C}} < 1$ on all finitely presented Cayley graphs. -proved for \mathbb{Z}^d by Braga et.al. '02
- $p_{\mathbb{C}}$ < 1 on all non-amenable graphs.
- *n*-point functions τ , τ^f analytic for $p > p_c$ on all planar lattices.
 - Braga et.al. '04 prove analyticity near p = 1 for \mathbb{Z}^d

- θ etc. analytic for $p > p_c$ on regular trees. -trivial for binary tree, but what about higher degrees?
- $p_c = p_{\mathbb{C}}$ on all planar lattices. –previously open for all graphs; C^{∞} known for \mathbb{Z}^d
- $p_c = p_{\mathbb{C}}$ for continuum percolation in \mathbb{R}^2 . -asked by Last et.al '16; C^{∞} known
- $p_{\mathbb{C}} < 1$ on all finitely presented Cayley graphs. -proved for \mathbb{Z}^d by Braga et.al. '02
- $p_{\mathbb{C}}$ < 1 on all non-amenable graphs.
- *n*-point functions τ , τ^f analytic for $p > p_c$ on all planar lattices.
 - Braga et.al. '04 prove analyticity near p = 1 for \mathbb{Z}^d
- $p_{\mathbb{C}} \le 1/2$ on certain families of triangulations.
 - progress on questions of Benjamini & Schramm '96, and Benjamini '16.

Open problem:

Is $\theta(p)$ analytic for $p > p_c$?

Open problem:

Is $\theta(p)$ analytic for $p > p_c$?

'it is a well-known problem of debatable interest...'
—Grimmett '99

Open problem:

Is $\theta(p)$ analytic for $p > p_c$?

'it is a well-known problem of debatable interest...'
—Grimmett '99

'...this in not just an academic matter. For instance, there are examples of disordered systems in statistical mechanics that develop a Griffiths singularity, i.e., systems that have a phase transition point even though their free energy is a C[∞] function.' −Braga, Proccaci & Sanchis '02

Partitions of *n*

Theorem (Hardy & Ramanujan 1918)

The number of partitions of the integer n is of order $exp(\sqrt{n})$.

Elementary proof: [P. Erdös, Annals of Mathematics '42]

Finitely presented Cayley graphs

Theorem: $p_{\mathbb{C}}$ < 1 for every finitely presented Cayley graph.

Similar arguments, but we had to generalise *separating curves* to all graphs.

Finitely presented Cayley graphs

Theorem: $p_{\mathbb{C}}$ < 1 for every finitely presented Cayley graph.

Similar arguments, but we had to generalise *separating curves* to all graphs.

Theorem: $p_{\mathbb{C}} \leq 1 - p_c$ for certain lattices in \mathbb{Z}^d , $d \geq 2$.

Percolation on groups

Theorem (Benjamini & Schramm '96)

If ch(G) > 0 (i.e. G is non-amenable), then $p_c < \frac{1}{ch(G)+1}$

Paper had a great influence, triggering the study of percolation on groups.

Percolation on groups

Theorem (Benjamini & Schramm '96)

If ch(G) > 0 (i.e. G is non-amenable), then $p_C < \frac{1}{ch(G)+1}$

Paper had a great influence, triggering the study of percolation on groups.

... for example, percolation can characterise amenability:

Theorem (← Aizenman, Kesten & Newman '87, ⇒ Pak & Smirnova Nagnibeda '00)

A f.g. group Γ is non-amenable iff it has a Cayley graph with $p_c < p_u$.

Percolation on groups

Theorem (Benjamini & Schramm '96)

If ch(G) > 0 (i.e. G is non-amenable), then $p_c < \frac{1}{ch(G)+1}$

Paper had a great influence, triggering the study of percolation on groups.

Theorem: every f.g. non-amenable group has a Cayley graph in which θ is analytic at p_u .

• Prove or disprove $p_{\mathbb{C}} = p_c$ in higher dimensions

- Prove or disprove $p_{\mathbb{C}} = p_c$ in higher dimensions
- Extend your parameter to ℂ

- Prove or disprove $p_{\mathbb{C}} = p_c$ in higher dimensions
- Extend your parameter to ℂ

Further reading:

[H. Duminil-Copin, Sixty years of percolation]

[H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^d]

- Prove or disprove $p_{\mathbb{C}} = p_c$ in higher dimensions
- Extend your parameter to ℂ

Further reading:

- [H. Duminil-Copin, Sixty years of percolation]
- [H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^d]

These slides are on-line

Horizon 2020 European Union funding for Research & Innovation