Infinite Cycles in Graphs

Agelos Georgakopoulos

Mathematisches Seminar Universität Hamburg

Vancouver, 3-18-2008

How do you define an infinite cycle?

Things that go wrong if you only allow finite cycles:

Things that go wrong if you only allow finite cycles:

 Tutte's theorem that the peripheral cycles of a 3-connected graph generate all cycles

Things that go wrong if you only allow finite cycles:

- Tutte's theorem that the peripheral cycles of a 3-connected graph generate all cycles
- Thomassen's theorem that every (k+3)-connected graph contains a cycle C such that G-C is k-connected

Things that go wrong if you only allow finite cycles:

- Tutte's theorem that the peripheral cycles of a 3-connected graph generate all cycles
- Thomassen's theorem that every (k+3)-connected graph contains a cycle C such that G-C is k-connected
- Hamilton cycles?

Tutte's Theorem

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

Tutte's Theorem

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

Theorem (Yu '05)

Every locally finite 4-connected planar graph with at most 2 ends has a spanning double ray

Infinite Cycles

Infinite Cycles

end: equivalence class of rays two rays are equivalent if no finite vertex set separates them

The Freudenthal compactification

Circle (Diestel & Kühn): A homeomorphic image of S^1 in |G|.

The Freudenthal compactification

Circle (Diestel & Kühn): A homeomorphic image of S^1 in |G|.

Circle:

A homeomorphic image of S^1 in |G|.

I-TOP

An equivalent definition of |G|:

Assign a length ℓ(e) > 0 to each edge e;

An equivalent definition of |G|:

- Assign a length ℓ(e) > 0 to each edge e;
- This induces a metric $d_{\ell}(v, x)$;

An equivalent definition of |G|:

- Assign a length $\ell(e) > 0$ to each edge e;
- This induces a metric $d_{\ell}(v, x)$;
- Let ℓ -TOP(G) be the completion of (G, d_{ℓ}) .

I-TOP

An equivalent definition of |G|:

- Assign a length ℓ(e) > 0 to each edge e;
- This induces a metric $d_{\ell}(v, x)$;
- Let ℓ -TOP(G) be the completion of (G, d_{ℓ}) .

Proposition (G)

If
$$\sum_{e \in E(G)} \ell(e) < \infty$$
 then ℓ -TOP(G) $\approx |G|$.

Circle:

A homeomorphic image of S^1 in |G|.

- Tutte's theorem that the peripheral cycles of a 3-connected graph generate all cycles
- Thomassen's theorem that every (k+3)-connected graph contains a cycle C such that G-C is k-connected
- Hamilton cycles?

Infinite cycles

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices.

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected 1-ended graph has a spanning double ray.

Fleischner's Theorem for Locally Finite Graphs

Theorem (G '06)

The square of a locally finite 2-connected graph has a Hamilton circle

Cycle Space

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of circuits

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of circuits

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over Z₂
- Consists of all sums of circuits

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

Allows edge sets of infinite circles;

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over Z₂
- Consists of all sums of circuits

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Known facts:

- A connected graph has an Euler tour iff every edge-cut is even (Euler)
- G is planar iff C(G) has a simple generating set (MacLane)
- If G is 3-connected then its peripheral circuits generate C(G) (Tutte)

Generalisations:

Bruhn & Stein

Bruhn

Bruhn & Stein

Failure in "continuous" problems

Theorem

The geodetic cycles of a finite graph G generate its cycle space.

Failure in "continuous" problems

Theorem

The geodetic cycles of a finite graph G generate its cycle space.

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph generate C(G)

Failure in "continuous" problems

Theorem

The geodetic cycles of a finite graph G generate its cycle space.

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph generate C(G)

... provided the edges are assigned lengths ℓ that respect |G|, i.e. ℓ - $TOP(G) \approx |G|$.

I-TOP

- Assign a length ℓ(e) > 0 to each edge e;
- This induces a metric $d_{\ell}(v, x)$;
- Let ℓ -TOP(G) be the completion of (G, d_{ℓ}) .

Proposition (G)

If
$$\sum_{e \in E(G)} \ell(e) < \infty$$
 then ℓ -TOP(G) $\approx |G|$.

Infinite electrical networks

Similarly:

Theorem

In a locally finite electrical network the infinite circles satisfy Kirchhoff's 2nd law if ℓ -TOP(G) $\approx |G|$, where $\ell(e)$ is the resistance of e.

Infinite electrical networks

Similarly:

Theorem

In a locally finite electrical network the infinite circles satisfy Kirchhoff's 2nd law if ℓ -TOP(G) $\approx |G|$, where $\ell(e)$ is the resistance of e.

Even stronger:

Theorem (G)

In a locally finite electrical network with resistances $\ell(e)$, all "proper" circles in ℓ -TOP(G) satisfy Kirchhoff's 2nd law.

Geodetic circles

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph G generate C(G)

... provided the edges are assigned lengths ℓ that respect |G|, i.e. ℓ - $TOP(G) \approx |G|$.

Open problems

Conjecture

Every locally finite 4-connected line graph has a Hamilton circle.

Hamiltonicity in Cayley graphs

Problem

Does every finite Cayley graph have a Hamilton cycle?

Hamiltonicity in Cayley graphs

Problem

Does every finite Cayley graph have a Hamilton cycle?

Problem 8 1

Does every 1-ended Cayley graph have a Hamilton circle (i.e. a spanning double ray)?

Hamiltonicity in Cayley graphs

Problem

Does every finite Cayley graph have a Hamilton cycle?

Problem 5 4 1

Does every 1-ended Cayley graph have a Hamilton circle (i.e. a spanning double ray)?

Problem

Prove that a Cayley graph of a finitely generated group Γ has a Hamilton circle unless Γ is the amalgamated product of more than k groups over a subgroup of order k.

Open Problems

Theorem (Thomassen)

Every finite (k + 3)-connected graph contains a cycle C such that G - C is k-connected.

Open Problems

Theorem (Thomassen)

Every finite (k + 3)-connected graph contains a cycle C such that G - C is k-connected.

Problem (Diestel)

If G is a locally finite (k+3)-connected graph, does |G| contain a circle C such that G-C is k-connected or |G|-C is topologically k-connected?