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How Mafia’s grow

A network evolves in (continuous or discrete) time with the
following rules:

@ When a (Poisson) clock ticks, nodes split into two;

@ When a node x splits into two nodes x’, x”’, each of its
existing edges gets inherited by x” or x” independently
with probability 1/2;

@ Moreover, a Poisson(k)-distributed number of new edges
are added between x’ and x”.
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How Mafia’s grow

A network evolves in (continuous or discrete) time with the
following rules:

@ When a (Poisson) clock ticks, nodes split into two;

@ When a node x splits into two nodes x’, x”’, each of its
existing edges gets inherited by x” or x” independently
with probability 1/2;

@ Moreover, a Poisson(k)-distributed number of new edges
are added between x’ and x”.

As time goes to infinity, the distribution of the component
(mafia) of a designated vertex converges.

Is the component in the limit distribution finite or infinite?
If it is finite, is its expected size finite or infinite?
If finite, how does it depend on k?
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Random Graphs

1396 papers on MathSciNet with "random graph" in their title

... most of which on the Erd6s-Renyi model G(n, p):

e nvertices

e each pair joined with an edge, independently, with same
probability p = p(n).

p=0 p=01 p=02
Real-world networks?

@ Preferential attachment networks

@ Geometric random graphs
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Geometric Random Graphs Literature

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture
Notes, 2013.]

[Mathew Penrose. Random Geometric Graphs. Oxford University Press,
2003.]
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Geometric Random Graphs Literature

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture
Notes, 2013.]

[Mathew Penrose. Random Geometric Graphs. Oxford University Press,
2003.]
Random planar graphs ...

Percolation theory ...
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Simulations by C. Moniz.
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Random Graphs from trees

Simulations by C. Moniz.
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A nice property

Proposition

For every two measurable
subsets X, Y of the Poisson (or
Martin) boundary 6G,

E(# edges xy in Ry,
with x ‘close to’ X
and y ‘close to’ Y)

converges.
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A nice property

For every two measurable
subsets X, Y of the Poisson (or
Martin) boundary 6G,

E(4 edges xy in Ry,
with x ‘close to’ X
and y ‘close to’ Y)

converges.

We use the limit to define a measure on G x 4G via

C(X,Y) := limE(4 edges ...)



Energy and Douglas’ formula

The classical Douglas formula [Douglas '31]

27 27
E(h - fo - (hon) - oo molnoe

calculates the (Dirichlet) energy of a
harmonic function h on D from its
boundary values h on the circle dD.
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Energy in finite electrical networks

E(h) = Y apes (M@ — h(b))? Cap,

Agelos Georgakopoulos



Energy in finite electrical networks

E(h) = Y apes (M@ — h(b))? Cap,

Compare with Douglas: E(h) = 02" 02”(77(77) — h())20(, mdnd¢

Agelos Georgakopoulos



Energy in finite electrical networks

E(h) = ¥ apes (N(@) — h(b)) Cap,
Compare with Douglas: E(h) = 02" 02”(77(77) — h())20(, mdnd¢

How can we generalise this to an arbitrary domain?

Agelos Georgakopoulos



Energy in finite electrical networks

E(h) = ¥ apes (N(@) — h(b)) Cap,
Compare with Douglas: E(h) = 02" 02”(77(77) — h())20(, mdnd¢

How can we generalise this to an arbitrary domain?
To an infinite graph?
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Effective conductance

We call C the effective conductance measure, because

Theorem (G & V. Kaimanovich '12-17+)

For every locally finite network G, and every harmonic
function h, we have

—~ 2
Eh) = [,5.06 (A0 = (D) dC@. 0.
History: Douglas '31, Naim ’57, Doob '62, Silverstein '74

Finite version: E(h) = 3, pes (M@ — h(b))? Cap

b
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Random Interlacements and C

Random Interlacements 7 [Sznitman]:
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Random Interlacements and C

Random Interlacements 7 [Sznitman]:

e A Poisson point process whose ‘points’ are 2-way infinite
trajectories

e governed by a certain o-finite measure v

e obtained as the limit of random walk trajectories in an
nx nwindow in a discrete torus.

Theorem (G & Kaimanovich '17+)

For every transient, locally finite graph G,
CX,Y)=v(xy W").
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Thanks to O. Angel and G. Ray for important ideas)
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Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman & Schulman, Aizenman & Newman ’86)

In long range percolation on Z, with edge rates 1/|x — y|°,
percolation occurs for large enough A if s < 2.

RA(Z?) converges (a la Benjamini-Schramm) to an instance R%
of this (with s =2) as n — .

But R (Tree) does not percolate for any A!

How large is R (T)?
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The expected size of the TWRG

Let C# denote the component of a uniformly random vertex of
Ra(T) (or RL(T)).

Theorem (G & Haslegrave, state of the art 2/17)

eb/l

e'<E(Clh<e
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The expected size of the TWRG

Let C# denote the component of a uniformly random vertex of
Ra(T) (or RL(T)).

Theorem (G & Haslegrave, state of the art 2/17)

eb/l

e'<E(Clh<e

Conijecture:
E(Cl) ~ A"

(backed by simulations)
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@ Interplay between the host group I" and its GWRGs
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Outlook

@ Interplay between the host group I" and its GWRGs
@ LetT act on C and see what happens
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