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A model for Mafia growth

A “social” network evolves in

(continuous or discrete)
time according to the following rules
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@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).
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inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
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As time goes to infinity, the distribution of the component of a
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

Does the limit M(1) depend on the starting network?
No! In other words,

There is a unique random graph M(Q)
invariant under the above operation.
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@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

Is M(2) finite or infinite?
It is finite almost surely
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

Is its expected size finite or infinite?
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

Is its expected size finite or infinite?
finite in the synchronous case,
we don’t know in the asynchronous case
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

How does the expected size depend on 17
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Random Graphs from trees

Simulations by C. Moniz
(Warwick).
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The expected size of M(2)

Let x(2) := E(M(2)|)

Theorem (G & Haslegrave '18+)

e < y(1) < e
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The expected size of M(2)

Let x(2) := E(M(2)|)

Theorem (G & Haslegrave '18+)

e < y(1) < e

Conjecture:

x(1) ~ A%

(backed by simulations)
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The expected size of M(2)

Let x(2) := E(M(2)|)

Theorem (G & Haslegrave '18+)

e < y(1) < e

Conjecture:

x(1) ~ A%

(backed by simulations)

Is x(1) continuous in A7
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Percolation model

;‘:ﬂj_—ue-—-'- —  Bernoulli bond percolation on
TR R an infinite graph, i.e.
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Percolation threshold:

pc := sup{p | Pp( component of o is infinite ) = 0}
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Historical remarks on percolation theory

Classical era:
Introduced by physicists Broadbent & Hammersley '57

pc(square grid) = 1/2 (Harris ’59 + Kesten ’80)

Many results and questions on phase transitions, continuity,
smoothness etc. in the '80s:

Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand,
Newman, Schulman, Slade, Zhang ... (apologies to many!)
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Historical remarks on percolation theory

Classical era:
Introduced by physicists Broadbent & Hammersley '57
pc(square grid) = 1/2 (Harris ’59 + Kesten ’80)

Many results and questions on phase transitions, continuity,
smoothness etc. in the '80s:

Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand,
Newman, Schulman, Slade, Zhang ... (apologies to many!)

Thought of as part of statistical mechanics
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Historical remarks on percolation theory

Modern era:
Benjamini & Schramm '96 popularised percolation on groups
‘beyond Z<’
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Historical remarks on percolation theory

Modern era:

Benjamini & Schramm '96 popularised percolation on groups
‘beyond Z<’

... for example, percolation can characterise amenability:

Theorem (< Aizenman, Kesten &
Newman '87,

= Pak &
Smirnova-Nagnibeda '00)
A finitely generated group is
non-amenable iff it has a Cayley
graph with p; < py.
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Historical remarks on percolation theory

Modern era:
Benjamini & Schramm '96 popularised percolation on groups
‘beyond Z<’

... for example, percolation can characterise amenability:

Theorem (Kesten '59)

A finitely generated Cayley graph is
non-amenable iff spectral radius of
Laplacian < 1 iff n-step return
probability of random walk decays
exponentially in n.
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Historical remarks on percolation theory

Modern era:
Benjamini & Schramm '96 popularised percolation on groups
‘beyond Z<’

... for example, percolation can characterise amenability:

Theorem (Kesten '59)

A finitely generated Cayley graph is
non-amenable iff spectral radius of
Laplacian < 1 iff n-step return
probability of random walk decays
exponentially in n.

See the textbooks [Lyons & Peres ’'15], [Pete-'18+} = for more.
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Historical remarks on percolation theory

Post-modern era:

Scaling limits of critical percolation in the plane
Conformal invariance thereof

SLE

Lawler-Schramm-Werner, Smirnov ... (apologies to many!)

Not covered in this talk.
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Back to classics: analyticity below p.

x(p) := Ep(IC(0))),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)

x(p) is an analytic function
of p for p € [0, pc) when G is a lattice in R9.
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Back to classics: analyticity below p.

x(p) := Ep(IC(0))),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)

x(p) is an analytic function
of p for p € [0, pc) when G is a lattice in R9.

‘Trying to think of negative probabilities gave me cultural shock
at first...”
—Richard Feynman,
from the paper Negative Probability (1987).

Let’s just extend p to the complex numbers...
—Harry Kesten ’81; blatantly paraphrased
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Some complex analysis basics

Theorem (Weierstrass): Let f =} f, be a series of analytic
functions which converges uniformly on each compact subset
of a domain Q c C. Then f is analytic on Q.

Weierstrass M-test: Let (f,) be a sequence of functions such
that there is a sequence of ‘upper bounds’ M, satisfying

(2] < Mp,¥xeQ and > My <o,
Then the series } f,(x) converges uniformly on Q.
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Some complex analysis basics

Theorem (Weierstrass): Let f =} f, be a series of analytic
functions which converges uniformly on each compact subset
of a domain Q c C. Then f is analytic on Q.

Weierstrass M-test: Let (f,) be a sequence of functions such
that there is a sequence of ‘upper bounds’ M, satisfying

If,(2) < Mp,¥x e Q  and Z M, < oo.
Then the series } f,(x) converges uniformly on Q.

Theorem (Aizenman & Barsky '87)

In every vertex-transitive percolation model,
Pp(ICl = n) < c;",
for every p < p. and some ¢, > 1.
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Conjectures on the percolation probability

8(p) := Pp(IC| = o),
i.e. the percolation probability.

148 Geoffrey Grimmett

0(p)

1

Pe 1 p

Fig. 1.1. Tt is generally believed that the percolation probability 6(p) behaves
roughly as indicated here. It is known, for example, that @ is infinitely differen-
tiable except at the critical point pc. The possibility of a jump discontinuity at pc
has not been ruled out when d > 3 but d is not too large.
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6(p) analytic?

Open problem:
Is 6(p) analytic for p > p.?

Appearing (for G = Z9%) in the textbooks
Kesten ‘82, Grimmett 96, Grimmett '99.
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Is 6(p) analytic for p > p.?

Appearing (for G = Z9%) in the textbooks
Kesten ‘82, Grimmett 96, Grimmett '99.

it is a well-known problem of debatable interest...’
—Grimmett '99
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6(p) analytic?

Open problem:
Is 6(p) analytic for p > p.?

Appearing (for G = Z9%) in the textbooks
Kesten ‘82, Grimmett 96, Grimmett '99.

it is a well-known problem of debatable interest...’
—Grimmett '99

“...this in not just an academic matter. For instance, there are
examples of disordered systems in statistical mechanics that
develop a Griffiths singularity, i.e., systems that have a phase

transition point even though their free energy is a C* function.’
—Braga, Proccaci & Sanchis 02
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Trees

8(p) := Pp(IC| = o0),
i.e. the percolation probability.

For percolation on the d-regular tree, we have

o(p) = 1 — (1 - po(p))®

where 6, solves 1 — 6y = (1 — pdp)?~".
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8(p) := Pp(IC| = o0),
i.e. the percolation probability.

For percolation on the d-regular tree, we have

o(p) = 1 — (1 - po(p))®

where 6, solves 1 — 6y = (1 — pdp)?~".

Proposition ¢ is analytic for p > p; on any regular tree (G &
Panagiotis '18+).
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Trees

8(p) := Pp(IC| = o0),
i.e. the percolation probability.

For percolation on the d-regular tree, we have

o(p) = 1 — (1 - po(p))®

where 6, solves 1 — 6y = (1 — pdp)?~".

Proposition ¢ is analytic for p > p; on any regular tree (G &
Panagiotis '18+).

Trivial for binary tree, but what about higher degrees?
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Trees

Proposition ¢ is analytic for p > p; on any regular tree (G &
Panagiotis '18+).

We deduce this from

Theorem (G & Panagiotis ’18+)

0 is analytic for p > ﬁ on any bounded-degree
graph with Cheeger constant h.
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Trees

Proposition ¢ is analytic for p > p; on any regular tree (G &
Panagiotis '18+).

We deduce this from

Theorem (G & Panagiotis ’18+)

0 is analytic for p > ﬁ on any bounded-degree
graph with Cheeger constant h.

Which builds upon

Theorem (Benjamini & Schramm ’'96)

pe < 71+ on any such graph.
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Analyticity for planar lattices

Theorem (G & Panagiotis '18+)
0(p) is analytic for p > pc on any planar lattice.

148 Geoffrey Grimmett

Pe 1‘ P

Fig. 1.1. It is generally believed that the percolation probability 0(p) behaves
roughly as indicated here. It is known, for example, that 0 is infinitely differen-
tiable except at the critical point pc. The possibility of a jump discontinuity at pe
has not been ruled out when d > 3 but d is not too large.
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Partitions of n

Theorem (Hardy & Ramanujan 1918)

The number of partitions of the integer n is of order

exp(Vn).

Elementary proof: [P, Erdds, Annals of Mathematics '42]
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Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis



Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Theorem (Babson & Benjamini '99):
pc < 1 for every finitely presented Cayley graph.
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Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Theorem (Babson & Benjamini '99):
pc < 1 for every finitely presented Cayley graph.

Theorem (GP ’18+):
0(p) is analytic for p near 1 for every finitely presented Cayley
graph.
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Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Theorem (Babson & Benjamini '99):
pc < 1 for every finitely presented Cayley graph.

Theorem (GP ’18+):
0(p) is analytic for p near 1 for every finitely presented Cayley
graph.

—Similar arguments, but we had to generalise interfaces
to all graphs.
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Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Theorem (Babson & Benjamini '99):
pc < 1 for every finitely presented Cayley graph.

Theorem (GP ’18+):
0(p) is analytic for p near 1 for every finitely presented Cayley
graph.

Theorem (Duminil-Copin, Goswami, Raoufi, Severo & Yadin '18+)

pc < 1 for every finitely generated Cayley graph.
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Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Theorem (Babson & Benjamini '99):
pc < 1 for every finitely presented Cayley graph.

Theorem (GP ’18+):
0(p) is analytic for p near 1 for every finitely presented Cayley
graph.

Theorem (Duminil-Copin, Goswami, Raoufi, Severo & Yadin '18+)

pc < 1 for every finitely generated Cayley graph.

Proof involves the Gaussian Free Field.
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Finitely presented Cayley graphs

Conjecture (Benjamini & Schramm ’96):
pc < 1 for every finitely generated Cayley graph.

Theorem (Babson & Benjamini '99):
pc < 1 for every finitely presented Cayley graph.

Theorem (GP ’18+):
0(p) is analytic for p near 1 for every finitely presented Cayley
graph.

Theorem (Haggstrom ’00)

Every bounded degree graph exhibits a phase transition in all
or none of the following models:
bond/site percolation, Ising, Widom-Rowlinson, beach model.
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Analyticity in Z¢

Theorem (G & Panagiotis '18+)

6(p) is analytic for p > 1 — p. for site percolation
on any ‘triangulated’ lattice inZ9,d > 2.
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Analyticity in Z¢

Theorem (G & Panagiotis '18+)

6(p) is analytic for p > 1 — p. for site percolation
on any ‘triangulated’ lattice inZ9,d > 2.

Proof based on the notion of interfaces from before,

and an exponential decay thereof...
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Analyticity in Z¢

Theorem (G & Panagiotis '18+)

6(p) is analytic for p > 1 — p. for site percolation
on any ‘triangulated’ lattice inZ9,d > 2.

Proof based on the notion of interfaces from before,
and an exponential decay thereof...

Is 6(p) analytic at 1 — p.?
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Analyticity in Z¢

Theorem (G & Panagiotis '18+)

6(p) is analytic for p > 1 — p. for site percolation
on any ‘triangulated’ lattice inZ9,d > 2.

Proof based on the notion of interfaces from before,
and an exponential decay thereof...

Is 6(p) analytic at 1 — p.?
Continuous at p.?

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis



Further reading:

Further reading:  [H. Duminil-Copin, Sixty years of percolation]

European
Commission
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