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1 Introduction

A popular problem in combinatorics is the proper edge colouring problem for
a given graph. Le. what is the least number of colours required to colour the
edges of that given graph without two incident edges having the same colour?
A specific variation of this problem is called the proper distortion colouring
problem for a bipartite graph using n colours, say. The problem is posed as
follows:

Let the bipartition of the graph be {A,B}. For each edge e € G let there be
a fixed permutation o, associated to that edge which permutes the n colours.
We now let an edge have 2 colours, one for each side, like so:

Suppose that the A side of the edge e is coloured x € {0,1,2,...,n-1}. Then the
B side of that edge will be coloured o.(x). The permutation essentially ‘distorts’
the colour of the edge, hence the name distortion colouring. Note that the set
of possible permutations that can be associated to an edge is dependent on the
number of colours used. Namely if n colours are used then each permutation is
essentially an element of .5,.

The aim of this short paper is to show that there is a proper distortion
colouring for a specific type of bipartite graph using 5 colours. The graph in
question is a specific type of biregular graph.

Definition 1. An (s,t)-biregular graph G is a bipartite graph,i.e G = (AUB,E)
such that each vertex in A has degree s, and each vertex in B has degree t.

Definition 2. A proper edge distortion colouring for a bipartite graph G ( with
respect to the permutations on the edges) is an assignment of colours to both
sides of all the edges such that:

1) If an edge e € G has its A side coloured x then its B side will automatically
be coloured o, (x).



2) For any v € V(G) the edges incident to v all have different colours when
‘seen’ from the vertez v.

In this paper we shall prove that an arbitrary (3,4) biregular multigraph
(with a finite number of vertices) has a proper distortion colouring using 5
colours regardless of the permutations on the edges. This is thus an extension
of the result proven in [1]. In that paper it is proven that an arbitrary finite
3 regular bipartite graph has a proper distortion colouring using 4 colours re-
gardless of the permutations on the edges. The concepts in that paper will be
referred to quite often here and thus it is advised that the reader reads that
paper before continuing with this one.

2 Main

Theorem 2.1. For every (3,4)-biregular multigraph G, and any edge distor-
tions, there is a proper distortion-colouring of E(G) using 5 colours 0,1,2,3,4.

Proof. Using an edge counting argument we see that there are 3|A| edges going
out of A and 4|B| edges going into B. Since G is bipartite that implies that 3|A|
= 4|B|. Thus 2 |A| = |B|. Now |B| € N so that means [A| = 4m for some m
€ N and |B| = 3m.

Now we shall artificially add m vertices to the partite set B. Let each vertex
in the set of extra vertices ( this set of vertices will be denoted P from now on),
have degree 4 such that the edges going between P and A cover each vertex in
A exactly once. From now on any edge going between P and A will be called a
‘fake’ edge, and in diagrams a fake edge will be coloured green. ‘Real’ edges will
usually be coloured black, except for later on in the proof where they may also
be coloured blue. This will be explained when the need arises. See the example
graph below for illustrative purposes.
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Figure 1: A 4-regular bipartite graph with fake edges going between vertex sets A and P.

Let G denote the graph obtained from G by adding the vertices and fake
edges as described above. Now since G is 4-regular that means that there exists



a perfect matching M in G [2, Corollary 2.1.3]. Now let G':= G- M, i.e. G is the
graph obtained from G by removing the matching M. G’ is 3 regular and thus
has a proper distortion colouring using 4 colours [1, Theorem 3.1] regardless
of the permutations on the edges. As it turns out the same result holds when
using 5 colours instead of 4, namely:

Corollary 2.1.1. For every 8 regular bipartite multigraph G, and any edge dis-
tortions, there is a proper distortion-colouring of E(G) using 5 colours 0,1,2,85,4.

Please refer to the appendix for the proof of this corollary. The proof is
almost identical to the proof in [1, Theorem 3.1] with a few minor adjustments
for the fact that 5 colours are used instead of 4.

Now to prove theorem 2.1, firstly observe that when removing the matching
M from G to obtain G we remove m false edges and 3m ‘real’ edges. (i.e. those
edges that also exist in G)

The idea is to add all of the 3m real edges in M back to G’ whilst preserving
a fixed proper edge distortion colouring for G’ which we know exists via corollary
2.1.1. Then we can simply remove the remaining fake edges and dummy vertices
( vertices in P) which would then yield that there is proper edge distortion
colouring for G using 5 colours no matter what permutations are on the edges,
as required.

Let us begin by attempting to add a single real edge e € M back to G’. From
now on real edges from M that are added to G’ will be coloured blue instead of
black. See below an example graph for clarification.
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Let the endpoints of e be vertices a € A, b € B, i.e. e = ab.

Firstly observe that there are 3 real edges (not including e) incident to the
vertex b € B which implies that there are 2 more distinct colours ‘available’ for
the B side of the edge e. Let x,y €{01,2,3,4} be the those available colours. Let
o7 1(x) and o 1(y) be the corresponding colours required for the A side of the
edge e.

Case 1: At least 1 of the colours o (x) and o, 1(y) is available at the vertex
a € A. Then we are done. Just use one of those colours for the A side of the
edge e.

Case 2: Neither of the 2 colours are available, i.e. the real edges incident to
the vertex a € A have the colours o, !(x) and 0. !(y) on their A side.

Without loss of generality consider the edge incident to vertex a € A coloured
o7 1(x) on its A side. Now look at its B side. There are 2 more colours available



for its B side. At least one of which will correspond to neither o, (x) nor o, 1(y)
on the A side of the edge. Use that colour for its B side. However what if the
corresponding colour for that edge at a € A ‘clashes’ with the colour of the fake
edge incident to a € A?

Well, firstly observe that we need to fix the colour on the B side of that
fake edge with the colour assigned to it by corollary 2.1.1. This is to avoid
disrupting the proper distortion colouring on G’ that we got from corollary
2.1.1. Fortunately, the fake edge incident to a € A can have any colour on its
A side even when we fix the colour on its B side. This is because the edge
distortion on a fake edge is not fixed. ( since we artificially added that edge to
the graph). So we shall change the edge distortion to force a colour on the A
side of this fake edge to avoid a clash if needed.

Thus we have now freed up the colour o !(x) for the A side of the edge e.
Thus we can now colour the edge e with o, 1(x) on its A side ( and thus with
colour x on its B side) without disrupting the proper distortion colouring of G’
as required.

Now we need to find a way to keep adding the real edges in M indefinitely.
The worst case scenario is clearly illustrated in this example graph below:
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Suppose we managed to add edges e; and ey to G’ without disrupting the
edge distortion colouring property. Now suppose we also try to add the edge e3
to G’. For the vertex a3 € A both real edges incident to as are incident to 3
more real edges on their B side instead of 2. ( including the blue edges e; and
es as real edges). Thus we will we need to adapt our argument accordingly for
this more complicated situation.

Firstly observe that there are 3 black edges incident to ez on its B side.
Hence there are 2 distinct colours a,8 € {0,1,2,3,4} available for the B side of
€3.

Now without loss of generality consider the ‘upper’ black edge incident to ag
€ A. Observe that on its B side, i.e. at by € B, that edge is incident to 3 more
real edges including e;. Now here comes the trick. Consider a 2-factor of G'.
Call it M. This 2 factor M obviously covers each vertex in G'U{ej,ez,e3 }and
is a collection of vertex disjoint cycles. It is also a subgraph of G’ and thus only
consists of black and green edges. Since there are 2 black edges incident to b; €



B ( not including the aforementioned ‘upper’ black edge) at least one of those
2 black edges is contained in the 2-factor M. (Remember that none of the blue
edges are contained in G’ and thus are also not contained in M). Without loss
of generality let the ‘bottom’ black edge be contained in M.

Now recall that in the proof of theorem 3.1 in [1] only 1 edge in each cycle
cannot be pre-coloured arbitrarily. However when the number of colours allowed
for the distortion colouring is 5 instead of 4, then there are 2 colours that can be
assigned to the B side of that edge without disrupting the distortion colouring.(
Refer to the proof in the appendix as to why is this is true). This means
that there are 2 colours available for the B side of the ‘bottom’ black edge
mentioned earlier without disrupting the distortion colouring. Thus there are
now 3 distinct colours x,y,z € {0,1,2,3,4} available for the B side of the ‘upper’
black edge. Those colours correspond to o~ !(x), c~*(y) and 0=1(z) on the A
side of that edge.

We need at least one of o' (), 0,,' () to be available at ag € A so that
we can use one of those colours to colour the A side of the edge es. ( Recall
that these are the only 2 colours for the A side of e3 that will not disrupt the
distortion colouring!)

So let us consider the edges incident to az € A. The fake edge’s permutation
is not fixed and hence that edge does not fix a colour. The lower black edge as
€ A does fix a colour. In the worst case scenario it ‘occupies’ either o (o) or
0., (B). Without loss of generality assume that it occupies o' (). However
the upper black edge can be coloured o~1(x), 0~!(y) or 071(z). One of which
must be neither the colour used by the lower black edge nor o, L(8). Hence
0.,1(B) is available for the A side of the blue edge es. Thus we can colour es
without disrupting the distortion colouring!

Hence we can add all of the 3m real edges in M to G’ without disrupting
the distortion colouring. Then we can simply remove the vertices in P (dummy
vertices) and the fake edges. ( removing edges and vertices will preserve the
distortion colouring). What remains is then the original graph G with a proper
distortion colouring using 5 colours as required. [J
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Appendix

Corollary 2.1.2. For every 3 regular bipartite multigraph G, and any edge dis-
tortions, there is a proper distortion-colouring of E(G) with 5 colours 0,1,2,3,4.
( Please note that the proof is almost identical to the proof in [1, Theorem 3.1]
with a few minor adjustments for the fact that 5 colours are used instead of 4.
Moreover the notation used here is slightly different than in the rest of the paper
as the proof follows the notation from [1]).

Proof: It is well known that the edges of a regular bipartite multigraph
can be decomposed into disjoint perfect matchings. So let M, M’, and M" be
perfect matchings of G with M U M’ U M" = E(G). Then M’ U M" is a 2
factor, and it can be decomposed into a collection C of vertex disjoint cycles.

Let {A,B} be the bipartition of V(G). We are going to let each element of C
choose the colours of edges of M incident with its A side. More precisely, given
a C € C, let Mcnadenote the set of edges M incident with C'N A. We are going
to prove that:

For every C € C there is a 5 colouring fa of Mcna such that for every 5
colouring fp of Mcnp, there is a 5-colouring fo of E(C) such that f4U fgU fo
is a proper distortion-5-colouring. (1)

Note that (1) easily implies a proper distortion-colouring of E(G) with 5
colours: the sets Mcna | C € C are pairwise edge disjoint, and their union is M.
Thus we can begin by colouring each of them by a colouring f4 as in (1) and
then we can extend the colouring to each C € C keeping it proper.

So let use prove (1). Given C € C, pick a 2-edge subarc uvy of C with u,y €
A. Distinguish two cases:

If the permutations of the edges uv, vy are identical, then give the edges
My, My of M incident with u,y colours that are different ( when seen from A).
If C happens to be a 2-cycle, in which case u = y give m,, = m, any colour.

If those permutations are not identical, then colour ( the A side) of both
Ma,my, with a colour « such that vu( «) # vy(a) ( i.e the colours on their B
sides are not the same)

In both case, colour the rest of Mcna arbitrarily; those colours will not
matter.

We claim that this colouring f4 has the desired property. To prove this, let
fB be any colouring of Mcnp, and note that for every edge e € E(C) the set L,
of still available colours for e, that is, the colours that would not conflict with
fa U fp if given to e on its B side, say, has at least 3 elements;indeed, only 2
edges adjacent with e have been coloured so far and we had 5 colours to begin
with.

Let us first deal with the case where C is not a 2-cycle, and consider again
the two edges vu, vy, and so Ly, # L., are neither equal nor disjoint, and each
contains at least three colours. We can find 2 common colours ¢, 17 € Ly, N Ly
and another 2 colours 7 in Ly, and § in L,,. So that they are all distinct. Now



colour vu with uv(vy) (so that the colour seems to be «y on its B side), and note
that our colouring is still proper, since this colour came from the allowed list.
Consider the next edge ux of C incident with u. This edge still has at least 2
allowed colours, after we colour uv ( recall that |L.| > 3). so give it one of those
colours. Continue like this along C, to properly colour all its edges except the
last edge vy. Now there are 2 options available for the last edge. Assigning one
of those colours to vy Completes the proper distortion colouring of C.

if C is a 2- cycle then the situation is much simpler, and it is straightforward
to check that (1) holds by distinguishing two cases according to whether its 2
edges bear the same permutations or not.

This completes the proof. Note that we have proved that the ‘last’ edge in a
cycle can have 2 colours assigned to it for any proper edge distortion colouring.
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