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Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Hamilton cycle theorems
Extremal graph theory
Cycle space theorems
many others ...
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Hamilton cycles

Hamilton cycle: A cycle containing all vertices.

Some examples:
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Spanning Double-Rays

Classical approach to ‘save’ Hamilton cycle theorems:
accept double-rays (diplèc aktÐnec) as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

4-connected := you can remove any 3 vertices and the graph remains
connected
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Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Yu ’05)
Every locally finite 4-connected planar
graph has a spanning double ray ...

unless
it is 3-divisible (triqotomÐsimo).
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Compactifying by Points at Infinity

A 3-divisible graph

can have no spanning double ray

......

... but a Hamilton cycle?
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Ends

pèrac (end): equivalence class of rays
two rays are equivalent if no finite vertex set separates them

......

two ends

one end

... ... ... ...... ... ... ...

uncountably many ends
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The End Compactification

|G|
= end compactification = Freudenthal compactification

Every ray converges to its end
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(Equivalent) definition of |G|

Give each edge e a length `(e) ∈ R+

This naturally induces a metric d` on G

Denote by |G|` the completion of (G, d`)

Theorem (G ’06)

If
∑

e∈E(G) `(e) < ∞ then |G|` is homeomorphic to |G|.
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices,
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices

,

(and all ends?)

`Aggeloc Gewrgakìpouloc Infinite graphs



Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices, and thus also all ends.
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A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices, and thus also all ends.
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

the wild circle of Diestel & Kühn
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Fleischner’s Theorem

Theorem (Fleischner ’74)
The square of a finite 2-connected graph has a
Hamilton cycle

Theorem (Thomassen ’78)
The square of a locally finite 2-connected 1-ended
graph has a Hamilton circle (i.e a spanning
double-ray).
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The Theorem

Theorem (G ’06, Adv. Math. ’09)
The square of any locally finite 2-connected
graph has a Hamilton circle
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Proof?
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Proof?

Hilbert’s space filling curve:

a sequence of injective curves with a non-injective limit
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The Theorem

Theorem (G ’06)
The square of any locally finite 2-connected
graph has a Hamilton circle.

Corollary (informal)
Most Cayley graphs are hamiltonian.
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Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)
Does every finite connected Cayley graph have a Hamilton
cycle?

Problem
Does every connected 1-ended Cayley graph have a Hamilton
circle?
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Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)
Does every finite connected Cayley graph have a Hamilton
cycle?

Problem
Does every connected 1-ended Cayley graph have a Hamilton
circle?

Problem
Characterise the locally finite Cayley graphs that admit
Hamilton circles.
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Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Hamilton cycle theorems
Extremal graph theory
Cycle space theorems
many others ...
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Cycle Space

The cycle space (kuklìqwroc) C(G) of a finite graph:
A vector space over Z2 (one coordinate per edge of G);
Consists of all sums of edge-sets of cycles of G.

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).
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The topological Cycle Space

Known facts:
A connected graph has an Euler tour iff
every edge-cut is even (Euler)
G is planar iff C(G) has a simple
generating set (MacLane)
The geodetic cycles of G generate C(G).

Generalisations:

Bruhn & Stein

Bruhn & Stein

G & Sprüssel
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MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein’05)
... verbatim generalisation for locally finite G
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2

Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).

Theorem (G ’09)
...the cycle decomposition theorem for graphs generalises to
arbitrary continua if one considers the ‘right’ homology...
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2
Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).

Theorem (Diestel & Sprüssel’ 09)

C(G) coincides with the first Čech homology group
of |G| but not with its first singular homology group.

Theorem (G ’09)
...the cycle decomposition theorem for graphs generalises to
arbitrary continua if one considers the ‘right’ homology...
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2
Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).

Problem
Can we use concepts from homology to generalise
theorems from graphs to other topological spaces?

Theorem (G ’09)
...the cycle decomposition theorem for graphs generalises to
arbitrary continua if one considers the ‘right’ homology...
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Some linear algebra

Let R be a ring and E any set

Consider the module RE

If T ⊆ RE is thin (also called slender), then
∑
T is well-defined.

thin (araiì): for every coordinate e ∈ E there are only finitely
many elements N ∈ T with N(e) 6= 0.

Problem

Does every generating set N ⊆ RE contain a basis of 〈N〉?

〈N〉:= {
∑
T | T ⊆ N , T is thin}

Theorem (Bruhn & G ’06)
Yes if R is a field and E is countable,
no otherwise.
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Some linear algebra

Let R be a ring and E any set
Consider the module RE

If T ⊆ RE is thin, then we can define
∑
T

thin: for every coordinate e ∈ E there are only finitely many
elements N ∈ T with N(e) 6= 0.

Problem

Let N ⊆ RE . Is 〈N〉 = 〈〈N〉〉?

Theorem (Bruhn & G ’06)
Yes if N is thin and R is a field or a finite ring,
no otherwise.

`Aggeloc Gewrgakìpouloc Infinite graphs



Some linear algebra

Let R be a ring and E any set
Consider the module RE

If T ⊆ RE is thin, then we can define
∑
T

thin: for every coordinate e ∈ E there are only finitely many
elements N ∈ T with N(e) 6= 0.

Problem

Let N ⊆ RE . Is 〈N〉 = 〈〈N〉〉?

Theorem (Bruhn & G ’06)
Yes if N is thin and R is a field or a finite ring,
no otherwise.

`Aggeloc Gewrgakìpouloc Infinite graphs



Some linear algebra

Let R be a ring and E any set
Consider the module RE

If T ⊆ RE is thin, then we can define
∑
T

thin: for every coordinate e ∈ E there are only finitely many
elements N ∈ T with N(e) 6= 0.

Problem

Let N ⊆ RE . Is 〈N〉 = 〈〈N〉〉?

Theorem (Bruhn & G ’06)
Yes if N is thin and R is a field or a finite ring,
no otherwise.

`Aggeloc Gewrgakìpouloc Infinite graphs



Infinite electrical networks

Electrical networks have many applications in mathematics:

in the study of Random Walks
in the study of Riemannian
manifolds
in Combinatorics
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The discrete Network Problem

The setup:

A graph G = (V , E)
a function r : E → R+ (the resistances)
a source and a sink p, q ∈ V
a constant I ∈ R (the intensity of the current)

The problem:
(Discrete Dirichlet
Problem)

Find a p-q flow f in G with intensity I that
satisfies Kirchhoff’s second law:

∑
~e∈~E(C)

v(~e) = 0

where v(~e) := f (~e)r(e) (Ohm’s law)
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Uniqueness of solutions

The problem:

Find a p-q flow f in G with intensity I that
satisfies Kirchhoff’s second law:∑

~e∈~E(C)
v(~e) = 0

where v(~e) := f (~e)r(e) (Ohm’s law)

Finite Networks

Unique solution

Networks of finite
total resistance

?

Infinite Networks

Not necessarily
unique solution
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Good flows

Good flow:
The net flow along any
such cut must be zero:

=

p

q

`Aggeloc Gewrgakìpouloc Infinite graphs



The Theorem

Theorem (G ’08)

In a network with
∑

e∈E r(e) < ∞ there is a
unique good flow with finite energy that satisfies
Kirchhoff’s second law.

Energy of f : 1
2

∑
e∈E f 2(e)r(e)

=

p

q

Finite Networks

Unique solution

Networks of finite
total resistance

?

Infinite Networks

Not necessarily
unique solution
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Proof of uniqueness

Finite case:

Assume there are two ‘good’ flows f , g
and consider z := f − g

Infinite case:
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Finding wild circles by a limit construction

Assume, there are two ‘good’ flows f , g and consider

z := f − g
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