Γενικεύοντας από πεπερασμένα γραφήματα σε άπειρα και ακόμα παραπέρα

Άγγελος Γεωργακόπουλος

Technische Universität Graz and Mathematisches Seminar Universität Hamburg

Αθήνα, 23-6-2010

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Hamilton cycles

Hamilton cycle: A cycle containing all vertices.

Some examples:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

⇒ need more general notions

Classical approach to 'save' Hamilton cycle theorems: accept double-rays (διπλές αχτίνες) as infinite cycles

Classical approach to 'save' Hamilton cycle theorems: accept double-rays (διπλές ακτίνες) as infinite cycles

This approach only extends finite theorems in very restricted cases:

Classical approach to 'save' Hamilton cycle theorems: accept double-rays (διπλές ακτίνες) as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

4-connected := you can remove any 3 vertices and the graph remains connected

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ...

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ... unless it is 3-divisible (τριχοτομίσιμο).

A 3-divisible graph

A 3-divisible graph

A 3-divisible graph can have no spanning double ray

A 3-divisible graph can have no spanning double ray

A 3-divisible graph can have no spanning double ray

A 3-divisible graph can have no spanning double ray

... but a Hamilton cycle?

Every ray converges to its end

|G| = end compactification = Freudenthal compactification

Every ray converges to its end

Give each edge e a length $\ell(e) \in \mathbb{R}^+$

Give each edge e a length $\ell(e) \in \mathbb{R}^+$

This naturally induces a metric d_{ℓ} on G

Give each edge e a length $\ell(e) \in \mathbb{R}^+$

This naturally induces a metric d_{ℓ} on G

Denote by $|G|_{\ell}$ the completion of (G, d_{ℓ})

Give each edge e a length $\ell(e) \in \mathbb{R}^+$

This naturally induces a metric d_{ℓ} on G

Denote by $|G|_{\ell}$ the completion of (G, d_{ℓ})

Theorem (G '06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell}$ is homeomorphic to |G|.

Circle:

A homeomorphic image of S^1 in |G|.

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices (and all ends?)

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices, and thus also all ends.

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices, and thus also all ends.

Circle:

A homeomorphic image of S^1 in |G|.

Circle:

A homeomorphic image of S^1 in |G|.

the wild circle of Diestel & Kühn

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected <u>1-ended</u> graph has a Hamilton circle (i.e a spanning double-ray).

The Theorem

Theorem (G '06, Adv. Math. '09)

The square of any locally finite 2-connected graph has a Hamilton circle

Hilbert's space filling curve:

a sequence of injective curves with a non-injective limit

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle.

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle.

Corollary (informal)

Most Cayley graphs are hamiltonian.

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem

Characterise the locally finite Cayley graphs that admit Hamilton circles.

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

The cycle space (χυχλόχωρος) C(G) of a finite graph:

- A vector space over \mathbb{Z}_2 (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.

The cycle space (χυχλόχωρος) C(G) of a finite graph:

- A vector space over \mathbb{Z}_2 (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.

i.e., the first simplicial homology group of G.

The cycle space (χυχλόχωρος) C(G) of a finite graph:

- A vector space over \mathbb{Z}_2 (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

The cycle space (χυχλόχωρος) C(G) of a finite graph:

- A vector space over \mathbb{Z}_2 (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

Allows edge sets of infinite circles;

The cycle space (χυχλόχωρος) C(G) of a finite graph:

- A vector space over \mathbb{Z}_2 (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

The topological Cycle Space

Known facts:

- A connected graph has an Euler tour iff every edge-cut is even (Euler)
- G is planar iff C(G) has a simple generating set (MacLane)
- The geodetic cycles of G generate C(G).

Generalisations:

Bruhn & Stein

Bruhn & Stein

G & Sprüssel

MacLane's Planarity Criterion

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

simple: no edge appears in more than two generators.

MacLane's Planarity Criterion

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein'05)

... verbatim generalisation for locally finite G

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Cycle Space

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Theorem (Diestel & Sprüssel' 09)

 $\mathcal{C}(G)$ coincides with the first Čech homology group of |G| but not with its first singular homology group.

Cycle Space

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Problem

Can we use concepts from homology to generalise theorems from graphs to other topological spaces?

Cycle Space

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Theorem (G '09)

...the cycle decomposition theorem for graphs generalises to arbitrary continua if one considers the 'right' homology...

Let *R* be a ring and *E* any set

Let R be a ring and E any set Consider the module R^E

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin (also called *slender*), then $\sum \mathcal{T}$ is well-defined. thin $(\alpha \rho \alpha \iota \delta)$: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin (also called *slender*), then $\sum \mathcal{T}$ is well-defined. thin $(\alpha \rho \alpha \iota \delta)$: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Does every generating set $\mathcal{N} \subseteq R^E$ contain a basis of $\langle \mathcal{N} \rangle$?

$$\langle \mathcal{N} \rangle := \{ \sum \mathcal{T} \mid \mathcal{T} \subseteq \mathcal{N}, \mathcal{T} \text{ is thin} \}$$

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin (also called *slender*), then $\sum \mathcal{T}$ is well-defined. thin $(\alpha \rho \alpha \iota \delta)$: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Does every generating set $\mathcal{N} \subseteq R^E$ contain a basis of $\langle \mathcal{N} \rangle$?

$$\langle \mathcal{N} \rangle := \{ \sum \mathcal{T} \mid \mathcal{T} \subseteq \mathcal{N}, \mathcal{T} \text{ is thin} \}$$

Theorem (Bruhn & G'06)

Yes if R is a field and E is countable, no otherwise.

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Let
$$\mathcal{N}\subseteq R^E$$
. Is $\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle$?

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Let
$$\mathcal{N}\subseteq R^{\mathsf{E}}$$
. Is $\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle$?

Theorem (Bruhn & G'06)

Yes if N is thin and R is a field or a finite ring, no otherwise.

Electrical networks have many applications in mathematics:

Electrical networks have many applications in mathematics:

• in the study of Random Walks

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds
- in Combinatorics

The setup:

A graph
$$G = (V, E)$$

The setup:

A graph G = (V, E) a function $r : E \to \mathbb{R}_+$ (the *resistances*)

The setup:

The setup:

A graph G = (V, E) a function $r : E \to \mathbb{R}_+$ (the *resistances*) a *source* and a *sink* $p, q \in V$

The setup:

A graph G = (V, E)a function $r : E \to \mathbb{R}_+$ (the *resistances*) a *source* and a *sink* $p, q \in V$ a constant $I \in \mathbb{R}$ (the *intensity* of the current)

The setup:

A graph G = (V, E)a function $r : E \to \mathbb{R}_+$ (the *resistances*) a *source* and a *sink* $p, q \in V$ a constant $I \in \mathbb{R}$ (the *intensity* of the current)

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

(Discrete Dirichlet Problem)

The setup:

A graph G=(V,E) a function $r:E\to\mathbb{R}_+$ (the *resistances*) a *source* and a *sink* $p,q\in V$ a constant $I\in\mathbb{R}$ (the *intensity* of the current)

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

(Discrete Dirichlet Problem)

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

The setup:

A graph G=(V,E) a function $r:E\to\mathbb{R}_+$ (the *resistances*) a *source* and a *sink* $p,q\in V$ a constant $I\in\mathbb{R}$ (the *intensity* of the current)

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

(Discrete Dirichlet Problem)

$$\sum_{ec{e} \in ec{E}(extbf{ extit{C}})} v(ec{e}) = 0$$

where $\mathbf{v}(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $\mathbf{v}(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $\mathbf{v}(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Infinite Networks

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $\mathbf{v}(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Infinite Networks

Unique solution

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Unique solution

Infinite Networks

Not necessarily unique solution

Find a *p-q* flow *f* in *G* with intensity *I* that satisfies Kirchhoff's second law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Unique solution

Networks of finite total resistance

7

Infinite Networks

Not necessarily unique solution

Good flows

Good flow:

The net flow along any such cut must be zero:

The Theorem

The Theorem

Finite Networks

Unique solution

Networks of finite total resistance

?

Infinite Networks

Not necessarily unique solution

The Theorem

Theorem (G '08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique good flow with finite energy that satisfies Kirchhoff's second law.

Energy of
$$f: \frac{1}{2} \sum_{e \in E} f^2(e) r(e)$$

Finite Networks

Unique solution

Networks of finite total resistance

?

Infinite Networks

Not necessarily unique solution

Proof of uniqueness

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider z := f - g

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider z := f - g

Finite case:

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Finite case:

Infinite case:

$$z := f - g$$

$$z := f - g$$

$$z := f - g$$

