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The Unfriendly Partition Conjecture

Conjecture
Every countable graph admits a bipartition of its vertices such
that every vertex has at least as many opponents as it has
friends.
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Finite graphs have UFP’s

Theorem
Every finite graph has an unfriendly partition

proof: consider a cut maximising the number of cross-edges
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Locally finite graphs have UFP’s

Theorem
Every locally finite graph has an unfriendly partition
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Non-locally-finite graphs

How does the argument fail if G has vertices of infinite degree?
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Known facts

If G has only finitely many vertices of infinite degree then it
admits an unfriendly partition (Aharoni, Milner, and Prikry
’90)

If all vertices have degree ℵ0 then G admits an unfriendly
partition (easy)
There is an (uncountable) graph that does not admit an
unfriendly partition (Shelah and Milner ’90)

Conjecture
Every countable graph has an unfriendly partition.

Theorem (Bruhn, Diestel, G, and Sprüssel ’08)
Every graph has an unfriendly partition.

i.e. contains no infinite paths
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Proof
Theorem (Bruhn, Diestel, G, and Sprüssel)
Every rayless graph has an unfriendly partition.

Proof by induction ... on the rank

rank 0: finite graphs
rank n: S

rank < n

rank < n

rank < n

rank < n
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Examples

1rank

2rank

rank ω
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Rank

rank ω

Theorem (Schmidt ’83)
A graph has a rank iff it is rayless.

Agelos Georgakopoulos unfriendly partitions



Proof
Theorem (Bruhn, Diestel, G, and Sprüssel)
Every rayless graph has an unfriendly partition.

Proof by induction on the
rank

Q: vertices S that have
their full degree in finitely
many components

R: Other vertices of S

Vertices in R have many
more neighbours in Xi
than in S ∪ X0 ∪ . . . ∪ Xi−1

S
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