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all vertices of the graph. If she performs a random walk, what is
the expected total weight she will carry?

Which problem is harder?
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Cover Time

The Cover Time of a graph is being studied in several
disciplines:
@ many applications in computer science
—universal traversal sequences [Lovasz et.al.]
—testing graph connectivity [Lovasz et.al., Karlin & Raghavan]
—protocol testing [Mihail & Papadimitriou]

@ physicists have studied the fractal structure of the
uncovered set of a finite grid

@ mathematicians have studied e.g. cover time of Brownian
motion on Riemannian manifolds [Dembo, Peres, Rosen &
Zeitouni]
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The Cover Time problem is hard

Theorem (Ding Lee & Peres, Ann. Math.'12)

There is a polynomial time
algorithm approximating CT(G)
up to a multiplicative factor.

Theorem (G ’12)

There is an O(n*) algorithm computing cc(G) (exactly).

Clearly,
logn < CT/n<cc< CT < 4n®/27

A lot of questions arise as to more exact bounds for cc
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Hitting times

CCn= ) Hy,
yeV(G)

... where the hitting time H,, is the expected time for random
walk from r to reach y.
Computing H,y:

re-visits to x

visits to x
Hry = Z E# vefore hittingy = pr{X < y} - (E# ‘vefore hitting y )
X

X
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Hitting times

Theorem (Doyle & Snell '84)

The probability p-{x < y} equals the voltage v(r) when a
battery imposes voltages v(x) =1 and v(y) = 0.
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Hitting times

Theorem (Doyle & Snell '84)

The probability p-{x < y} equals the voltage v(r) when a
battery imposes voltages v(x) =1 and v(y) = 0.

Proof: Both functions p, and v(r) are harmonic, i.e.

)
o =45 WZrh(W)

at every vertex r # x, y. Both satisfy the same boundary
conditions at x, y
By uniqueness of harmonic functions, p must coincide with v.
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Tetali’s formula

Hr — Z pr{X<y}
xeV(G) Pxy

Tetali’s formula ('91):

1
Hy=5 D, dWw(rx.y)+rw.y) - rw.x)
weV(G)

The commute time formula (Chandra et. al. ’89):

K(x,y) := Hyy + Hyx = 2mr(x, y)
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Cover Cost and the Wiener Index

Theorem (G & S. Wagner '12)

For every tree T, and every r € V(T), we have

I CC(r)+D(r) = 2W(T)

..where D(r) := ¥ ey (1) d(r, y) is the centrality of r
and W(T) := 1 3 yev(r) d(x, y) is the Wiener Index of T.
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Cover Cost and the Wiener Index

Theorem (G & S. Wagner '12)

For every tree T, and every r € V(T), we have

I CC(r)+D(r) = 2W(T)

..where D(r) := ¥ ey (1) d(r, y) is the centrality of r
and W(T) := 1 3 yev(r) d(x, y) is the Wiener Index of T.

Let CCy(r) := X yev(t) d(Y)Hry /2m. Then

CCy(r) =2Wy(T)
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Kemeny’s constant

Theorem (Kemeny & Snell °76)

For every graph G, the expected hitting time
from r to a random vertex y chosen with
probability proportional to d(y) does not
depend onr.
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Theorem (Kemeny & Snell °76)

For every graph G, the expected hitting time
from r to a random vertex y chosen with
probability proportional to d(y) does not
depend onr.

Moreover,
]
CCa(r) = K(G) = 2m ) 5= = K4(G.
A#1
where Ky(G) := 3 Yxevia) Lyevia) dX)AW)r(x, y)

and A ranges over the eigenvalues of the transition matrix.

[L. Lovasz: “Random Walks on Graphs: A Survey”, 93]
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Kemeny’s constant

Theorem (Kemeny & Snell °76)

For every graph G, the expected hitting time
from r to a random vertex y chosen with
probability proportional to d(y) does not
depend onr.

Moreover,

]
CCa(r) = K(G) = 2m ) 5= = K4(G.

A#1

where K4(G) := 3 Sxevie) Zyevic) dX)AY)r(x.y)

and A ranges over the eigenvalues of the transition matrix.
[H. Chen and F. Zhang: “Resistance distance and the normalized

Laplacian spectrum”, 07]
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Kemeny’s constant

Theorem (Kemeny & Snell '76)

For every graph G, the expected hitting time
from r to a random vertex y chosen with
probability proportional to d(y) does not
dependonr.

Question: Is there a ‘reverse’ Kemeny constant?
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Problem (Aldous ’89)

Let G be a graph such that the (random) time of the first return
to x by random walk from x has the same distribution for every
xeV.

Does G have to be vertex-transitive?
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Is there a ‘reverse’ Kemeny constant?

Problem (Aldous ’89)
Let G be a graph such that the (random) time of the first return
to x by random walk from x has the same distribution for every

xeV.
Does G have to be vertex-transitive?

Problem

Let G be a graph such that Hy, = H,x for every
x,y € V(G). Does G have to be regular?

Aldous’ condition implies that G is regular,
and is equivalent to:
“Tyxy has the same distribution as T, for every x,y € V(G)”.
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Is there a ‘reverse’ Kemeny constant?

The following are equivalent for every graph G:
@ Hyy = Hyx forevery x,y € V(G);
@ The hitting time from a random enpoint of a random
edge to x is independent of x;
© The (weighted) resistance-centrality

e dNIGY) - .
Ry(X) := W is independent of x.

Problem

Let G be a graph satisfying one of the above.
Does G have to be regular?
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Vertex orderings - General graphs

Theorem (G & Wagner ’12)
For every graph G, and every vertex x € V(G), we have

CC(0) = mA(X) - 3 Ra(X) + K4(G),

RC(x) = mR(x) + ng(x) - K)(G),

F?Cd(x) =2mRy(x) - Kd(G), and
CCq(x) = Ka(Q).
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Problem 1: A mailman has to deliver a letter to each vertex of
a finite graph. If he performs a random walk, what is his
expected number of steps until all letters are delivered?

Problem 2: A truck-driver has to distribute 1 ton of equally over
all vertices of the graph. If she performs a random walk, what is
the expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he
performs a random walk, what is the expected total waiting time
of his customers?
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Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)

There is a correspondence between finite planar
graphs and tilings of rectangles by squares.
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Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)

There is a correspondence between finite planar
graphs and tilings of rectangles by squares.

[Brooks, Smith, Stone & Tutte: “Determinants and current flows in electric
networks.” Discrete Math. '92)
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Properties of square tilings
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of G by a 90° rotation.
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The construction of square tilings
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The construction of square tilings
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33 28 33 28

- pole

@ Think of the graph as an electrical network;

@ impose an electrical current from p to g;

@ let the square corresponding to edge e have side length
the flow i(e);

@ place each vertex x at height equal to the potential h(x);
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The construction of square tilings

36

33 28 33 28

- pole

@ Think of the graph as an electrical network;

@ impose an electrical current from p to q;

@ let the square corresponding to edge e have side length
the flow i(e);

@ place each vertex x at height equal to the potential h(x);

@ use a duality argument to determine the width coordinates.
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The construction of square tilings

Square tilings can be generalised to all finite planar graphs, and
even beyond

[Benjamini & Schramm: “Random Walks and Harmonic Functions on
Infinite Planar Graphs Using Square Tilings” Ann. Probab., '96]
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Probabilistic interpretation of the tiling’s geography

Let C be a ‘parallel circle’ in the tiling T of G, and let B the
set of points of G at which C ‘dissects’ T. Then the widths of
the points of B in T coincide with the probability distribution
of the first visit to B by brownian motion on G starting at p.
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Probabilistic interpretation of the tiling’s geography

For every ‘meridian’ M in T, the
expected net number of crossings of
M by brownian motion on G starting
from p is 0.
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@ Think of Q as a metal plate;
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Harmonic functions on an infinite graph via a
Poisson-like integral

Question (Benjamini & Schramm ’96)

Does the Poisson boundary of every graph as above
coincide with the boundary of its square tiling?
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Harmonic functions on an infinite graph via a
Poisson-like integral

Question (Benjamini & Schramm ’96)

Does the Poisson boundary of every graph as above
coincide with the boundary of its square tiling?

Theorem (G ’12)

Yes!
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Summary

CC(r)+D(r) = 2W(T)

CCq(r) = Ky(G)
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