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Applications of electrical networks
Electrical networks have many applications in mathematics:

in the study of Random Walks
in the study of Riemannian
manifolds
in Combinatorics
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The discrete Dirichlet Problem

The setup:

A graph G = (V , E)
a function r : E → R+ (the resistances)
a source and a sink p, q ∈ V
a constant I ∈ R (the intensity of the current)

The problem:

Find a p-q flow in G with intensity I that satisfies
Kirchhoff’s cycle law:

∑
~e∈~E(C)

v(~e) = 0

where v(~e) := f (~e)r(e) (Ohm’s law)
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Uniqueness of solutions

The problem:

Find a p-q flow in G with intensity I that satisfies
Kirchhoff’s cycle law:∑

~e∈~E(C)
v(~e) = 0

where v(~e) := f (~e)r(e) (Ohm’s law)

Finite Networks

Unique solution

Networks of finite
total resistance

?

Infinite Networks

Not necessarily
unique solution
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Non-elusive flows

p q

The solution is not necessarily unique!

Non-elusive flow:
The net flow along any
finite cut must be zero:

=

p

q
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The Theorem

Theorem (G ’08)

In a network with
∑

e∈E r(e) < ∞ there is a unique non-elusive
flow with finite energy that satisfies Kirchhoff’s cycle law.

Energy of f :
∑

e∈E f 2(e)r(e)
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The proof

Finite case:

Assume there are two ‘good’ flows f , g
and consider z := f − g

Infinite case:
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Finding wild circles by a limit construction

Assume, again, there are two ‘good’ flows f , g and consider

z := f − g
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Do wild circles satisfy Kirchhoff’s cycle law?

∑
~e∈~E(C)

v(~e) = 0

?

~E(C) =
∑

F is a face boundary

~E(F )

∑
~e∈~E(C)

v(~e) =
∑

F is a face boundary

∑
~e∈~E(F )

v(~e)

= 0 ? IT DEPENDS!

∑
~e∈~E

v(~e) =
∑

F is a face boundary

= 0 = 0 ?

OK if
∑

r(e) < ∞
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The second tool

We need a tool that distinguishes edges with different
resistances:

`-TOP

let G = (V , E) be any graph
give each edge a length `(e)
this induces a metric: d(v , w) := inf{`(P) | P is a v -w path}
let |G|` be the completion of the corresponding metric space

Theorem (G ’06 (easy))

If
∑

e∈E r(e) < ∞ then |G|r ≈ |G|.
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Kirchhoff’s cycle law for wild circles

Theorem (Diestel & G)
The circles of a electrical network N satisfy Kirchhoff’s cycle
law if the sum of the resistances in N is finite.
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The Theorem
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The Dirichlet Problem

Continuous version

Let X ⊆ Rn be compact
Prescribe ϕ : ∂X → R
ϕ

ϕ

X

′

Extend to ϕ′ : X → R that is
harmonic inside X
∇2ϕ′ = 0

Discrete version

Let G be a graph
Prescribe ϕ : ∂G → R
Extend to ϕ′ : G → R that is
harmonic in G
i.e. satisfies Kirchhoff’s node law

Studied intensively (Woess,
Kaimanovich, Benjamini &
Schramm)

Studied intensively (Woess,
Kaimanovich, Benjamini & Schramm)
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The Dirichlet Problem

Problem
For evey assignment r : E → R+ (such that |G|r is compact) the
Dirichlet problem is solvable for every continuous φ : ∂|G|r → R.

Interesting because:

Theorem
For every compact metric space X there is a locally finite
graph G and r : E → R+ such that X = ∂|G|r .
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The Dirichlet Problem

Problem
For evey assignment r : E → R+ (such that |G|r is compact) the
Dirichlet problem is solvable for every continuous φ : ∂|G|r → R.

The converse works:

Theorem

If f : ~E → R is a flow of finite energy in G satisfying Kirchhoff’s
cycle law then it is possible to extend the corresponding
potentials continuously to ∂|G|r .
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Random Walks & Electrical networks

Every edge e has a weight c(e)

Go from x to y with probability

Px→y :=
c(xy)
c(x)

where c(x) :=
∑

xv∈E c(xv)

p

q

x
y

Ppq(x) := the probability that if you start in x you will hit p before q.

c(e) <=>
1

r(e)

Connect a source of voltage 1 to p, q

Ppq(x) = P(x)
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Random Walks & Electrical networks

Ppq(x) = P(x)

p

q

x
y

Ppq(x) := the probability that if you start in x you will hit p before q

p qx

Problem
Define brownian motion on |G|`

Agelos Georgakopoulos Networks



Random Walks & Electrical networks

Ppq(x) = P(x)

p

q

x
y

Ppq(x) := the probability that if you start in x you will hit p before q

p qx

Problem
Define brownian motion on |G|`

Agelos Georgakopoulos Networks



Random Walks & Electrical networks

Ppq(x) = P(x)

p

q

x
y

Ppq(x) := the probability that if you start in x you will hit p before q

p qx

Problem
Define brownian motion on |G|`

Agelos Georgakopoulos Networks



Random Walks & Electrical networks

Ppq(x) = P(x)

p

q

x
y

Ppq(x) := the probability that if you start in x you will hit p before q

p qx

Problem
Define brownian motion on |G|`

Agelos Georgakopoulos Networks



Summary

1
16

1
16

1
4

1
2

11 1 11

1
2

1
4

1
8

1
8

Theorem (G ’08)

In a network with
∑

e∈E r(e) < ∞ there is a unique ‘good’ current

Problem
Define brownian motion
on |G|`

Problem
Solve the Dirichlet Problem at the |G|`
boundary
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