A new homology for infinite graphs and metric continua

Agelos Georgakopoulos

University of Warwick

Warwick, 14/3/13

• Wild spaces have a huge fundamental group π_1 and 1st homology group

Wild spaces have a huge fundamental group π₁ and 1st homology group
 (1st Homology group H₁ = abelianization of π₁)

- Wild spaces have a huge fundamental group π₁ and 1st homology group
 (1st Homology group H₁ = abelianization of π₁)
- We are going to tame H₁ by removing some 'redundancy'

- Wild spaces have a huge fundamental group π₁ and 1st homology group
 (1st Homology group H₁ = abelianization of π₁)
- We are going to tame H₁ by removing some 'redundancy'
- ... using experience from infinite graph theory

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

C(G): the cycle space of $G = H_1(G)$ (simlicial or singular homology)= $Abel(\pi_1)$

simple: no edge appears in more than two generators.

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

C(G): the cycle space of $G = H_1(G)$ (simlicial or singular homology)= $Abel(\pi_1)$

simple: no edge appears in more than two generators.

?

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

C(G): the cycle space of $G = H_1(G)$ (simlicial or singular homology)= $Abel(\pi_1)$

simple: no edge appears in more than two generators.

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

C(G): the cycle space of $G = H_1(G)$ (simlicial or singular homology)= $Abel(\pi_1)$

simple: no edge appears in more than two generators.

But using the right homology (topological cycle space of Diestel & Kühn) ...:

Theorem (Bruhn & Stein '05)

... verbatim generalisation for locally finite G.

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

C(G): the cycle space of $G = H_1(G)$ (simlicial or singular homology)= $Abel(\pi_1)$

simple: no edge appears in more than two generators.

Idea: put a natural distance function on $H_1(X)$...

Idea: put a natural distance function on $H_1(X)$... and identify elements at distance 0.

 $d(a, b) := \inf (area you need to make <math>a \approx b)$

Idea: put a natural distance function on $H_1(X)$... and identify elements at distance 0.

 $\begin{array}{l} \textit{d}(\textit{a},\textit{b}) := \inf \left(\text{area you need to make } \textit{a} \approx \textit{b} \right) \\ \text{more precisely: } \textit{d}(\textit{a},\textit{b}) := \inf_{\substack{\chi^{\text{isom}} \textit{X'} \\ \textit{a} \approx \textit{b} \text{ in } \textit{X'}}} \operatorname{area}(\textit{X'} \backslash \textit{X}) \end{array}$

Idea: put a natural distance function on $H_1(X)$... and identify elements at distance 0.

 $d(a, b) := \inf (area you need to make <math>a \approx b)$ more precisely: $d(a, b) := \inf_{\substack{\chi \text{ isom } X' \\ a \approx b \text{ in } X'}} area(X' \setminus X)$

Let
$$H'_1(X) := H_1(X)/_{d=0}$$

$$d(a, b) := \inf (area you need to make $a \approx b)$$$

more precisely:
$$d(a, b) := \inf_{\substack{X \overset{\text{isom}}{\hookrightarrow} X' \\ a \approx b \text{ in } X'}} \operatorname{area}(X' \setminus X)$$

Let
$$H'_1(X) := H_1(X)/_{d=0}$$
 and, if you like, let $\widehat{H_1}(X)$ be its completeion.

Examples

A wild space by Z. Virk & A. Zastrow.

Cycle decompositions

Cycle decompositions

• Can you make a theorem out of this observation?

Cycle decompositions - finite graphs

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

->

What about more continuous spaces?

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

'?

What about more continuous spaces?

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

3

Theorem (G' 09)

For every compact metric space X and $C \in \overline{H_1}(X)$, there is a σ -representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

Cycle decompositions - infinite graphs

Theorem (Diestel & Kühn)

Every element of the topological cycle space C(G) of a locally finite graph G can be written as a union of a set of edge-disjoint circles.

Cycle decompositions - infinite graphs

Theorem (Diestel & Kühn)

Every element of the topological cycle space C(G) of a locally finite graph G can be written as a union of a set of edge-disjoint circles.

One of many classical theorems recently extended to infinite graphs using our new homology, the topological cycle space C(G) in an ongoing series of >30 papers by Diestel, Kühn, Bruhn, Stein, G, Sprüssel, Richter, Vella, et. al.

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_1}(X)$, there is a σ -representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_1}(X)$, there is a σ -representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

• Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_1}(X)$, there is a σ -representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;
- Prove the statement for primitive elements;

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_1}(X)$, there is a σ -representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.

• Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;

• Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;

We say that $C \in \widehat{H_1}(X)$ splits if there are $A, B \neq 0 \in \widehat{H_1}(X)$ with

$$C = A + B$$
, and $\ell(C) = \ell(A) + \ell(B)$.

• Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;

We say that $C \in \widehat{H_1}(X)$ splits if there are $A, B \neq 0 \in \widehat{H_1}(X)$ with

$$C = A + B$$
, and $\ell(C) = \ell(A) + \ell(B)$.

...where $\ell(C)$ is the minimal length of 1-simplices needed to represent C.

Proof sketch

• Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;

We say that $C \in \widehat{H_1}(X)$ splits if there are $A, B \neq 0 \in \widehat{H_1}(X)$ with

$$C = A + B$$
, and $\ell(C) = \ell(A) + \ell(B)$.

...where $\ell(C)$ is the minimal length of 1-simplices needed to represent C.

Then C is primitive if it doesn't split.

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_1}(X)$, there is a σ -representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_1}(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.

An intermediate result

Let $(\Gamma,+)$ be an abelian metrizable topological group, and suppose a function $\ell:\Gamma\to\mathbb{R}^+$ is given satisfying the following properties

- $\ell(a) = 0$ iff a = 0;
- $\ell(a+b) \le \ell(a) + \ell(b)$ for every $a, b \in \Gamma$;
- if $b = \lim a_i$ then $\ell(b) \leq \lim \inf \ell(a_i)$;
- Some "isoperimetric inequality" holds: e.g. $d(a, 0) \le U\ell^2(a)$ for some fixed U and for every $a \in \Gamma$.

Then every element of Γ is a (possibly infinite) sum of primitive elements.

The Conjecture

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

The Conjecture

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

?

Conjecture

Let X be a compact, 1–dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U := \{[\chi] \in \widehat{H_1}(X) \mid \chi \in S\}$ 'spans' $\widehat{H_1}(X)$.

• let G = (V, E) be any graph

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v w \text{ path}\}\$

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell} \approx |G|_{\ell}$and H_1 coincides with the topological cycle space and with $H_1(X)$.

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06, '09)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell} \approx |G|$, and $\overline{H_1}$ coincides with the topological cycle space and with $\check{H_1}(X)$.

ℓ-TOP

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Problem

Does every compact metrizable space X admit a metric such that $\widehat{H_1}(X) = \check{H_1}(X)$?

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (Bourdon & Pajot, ...)

For every compact metric space X there is a locally finite graph G and $\ell: E \to R_+$ such that the boundary of $|G|_{\ell}$ is isometric to X.

Applications of $|G|_{\ell}$ $(\ell$ -TOP)

• used by Floyd to study Kleinian groups (Invent. math. '80)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

Applications of $|G|_{\ell}$ $(\ell$ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

All above authors "discovered" |G|_ℓ independently!

Generalise to higher dimensions

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Try to 'tame' π_1 by similar methods

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Try to 'tame' π_1 by similar methods
- Compute H_1 for your favourite space

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Try to 'tame' π_1 by similar methods
- Compute H_1 for your favourite space

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Try to 'tame' π_1 by similar methods
- Compute H₁ for your favourite space

Sources:

AG: "Cycle decompositions: from graphs to continua", Advances in Mathematics, 229(2):935–967, 2012.

AG: "Graph topologies induced by edge lengths" Discrete Math., 311, 1523–1542, 2011.

These slides are available online

Summary

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_1}(X)$, there is a representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

$$d(a,b) := \inf_{\substack{X \subseteq M \\ a \approx b \text{ in } X'}} \operatorname{area}(X' \setminus X). \text{ Let } H'_1(X) := H_1(X)/_{d=0}$$

Conjecture

Let X be a compact, 1–dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U := \{[\chi] \in \widehat{H_1}(X) \mid \chi \in S\}$ 'spans' $\widehat{H_1}(X)$.

