Uniqueness of currents in a network of finite total resistance

Agelos Georgakopoulos

Technische Universität Graz and Mathematisches Seminar Universität Hamburg

Graz, 2.7.09

Electrical networks have many applications in mathematics:

Electrical networks have many applications in mathematics:

• in the study of Random Walks

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds
- in Combinatorics

The setup:

A graph
$$G = (V, E)$$

The setup:

A graph
$$G = (V, E)$$
 a function $r : E \to \mathbb{R}_+$ (the resistances)

The setup:

The setup:

A graph G = (V, E) a function $r : E \to \mathbb{R}_+$ (the resistances) a source and a sink $p, q \in V$

The setup:

A graph G=(V,E) a function $r:E\to\mathbb{R}_+$ (the resistances) a source and a sink $p,q\in V$ a constant $I\in\mathbb{R}$ (the intensity of the current)

The setup:

A graph G=(V,E) a function $r:E\to\mathbb{R}_+$ (the resistances) a source and a sink $p,q\in V$ a constant $I\in\mathbb{R}$ (the intensity of the current)

Find a *p-q* flow in *G* with intensity *I* that satisfies Kirchhoff's cycle law:

The problem:

The setup:

A graph G=(V,E) a function $r:E\to\mathbb{R}_+$ (the resistances) a source and a sink $p,q\in V$ a constant $I\in\mathbb{R}$ (the intensity of the current)

Find a p-q flow in G with intensity I that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

The setup:

A graph G=(V,E) a function $r:E\to\mathbb{R}_+$ (the resistances) a source and a sink $p,q\in V$ a constant $I\in\mathbb{R}$ (the intensity of the current)

Find a p-q flow in G with intensity I that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e}\in\vec{E}(C)}v(\vec{e})=0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Find a *p-q* flow in *G* with intensity *I* that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Find a *p-q* flow in *G* with intensity *I* that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Infinite Networks

Find a *p-q* flow in *G* with intensity *I* that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Infinite Networks

Unique solution

Find a *p-q* flow in *G* with intensity *I* that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Unique solution

Infinite Networks

Not necessarily unique solution

Find a *p-q* flow in *G* with intensity *I* that satisfies Kirchhoff's cycle law:

The problem:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm's law)

Finite Networks

Unique solution

Networks of finite total resistance

2

Infinite Networks

Not necessarily unique solution

The solution is not necessarily unique!

The solution is not necessarily unique!

The solution is not necessarily unique!

Non-elusive flow:

The net flow along any such cut must be zero:

Theorem (G '08)

Theorem (G '08)

Theorem (G '08)

Theorem (G '08)

Energy of
$$f: \frac{1}{2} \sum_{e \in E} f^2(e) r(e)$$

Theorem (G '08)

Energy of
$$f: \frac{1}{2} \sum_{e \in E} f^2(e) r(e)$$

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Assume there are two 'good' flows f, g and consider z := f - g

Finite case:

Infinite case:

A wild circle i.e. a homeomorphic image of S^1 in |G| (discovered by Diestel & Kühn)

A wild circle i.e. a homeomorphic image of S^1 in |G| (discovered by Diestel & Kühn)

Contains \aleph_0 double-rays aranged like the rational numbers

A wild circle i.e. a homeomorphic image of S^1 in |G| (discovered by Diestel & Kühn)

Contains \aleph_0 double-rays aranged like the rational numbers

The "gaps" between the double-rays are filled by a Cantor set of ends

The proof

Assume there are two 'good' flows f, g and consider z := f - g

Finite case:

Infinite case:

$$z := f - g$$

$$z := f - g$$

$$z := f - g$$

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary } \sum_{\vec{e} \in \vec{E}(F)} v(\vec{e})}$$

= 0

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary } \vec{e} \in \vec{E}(F)} v(\vec{e}) = 0 ?$$

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary } \sum_{\vec{e} \in \vec{E}(F)} v(\vec{e}) = 0 ? \text{ IT DEPENDS!}$$

= 0

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary } \sum_{\vec{e} \in \vec{E}(F)} v(\vec{e}) = 0 ? \text{ IT DEPENDS!}$$

= 0

 $OK if \sum_{e} r(e) < \infty$

We need a tool that distinguishes edges with different resistances:

ℓ-TOP

We need a tool that distinguishes edges with different resistances:

• let G = (V, E) be any graph

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}$

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}$
- \bullet let $|G|_{\ell}$ be the completion of the corresponding metric space

- let G = (V, E) be any graph
- give each edge a length ℓ(e)
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}$
- \bullet let $|G|_{\ell}$ be the completion of the corresponding metric space

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}$
- \bullet let $|G|_{\ell}$ be the completion of the corresponding metric space

We need a tool that distinguishes edges with different resistances:

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}$
- \bullet let $|G|_\ell$ be the completion of the corresponding metric space

Theorem (G '06 (easy))

If
$$\sum_{e \in F} \ell(e) < \infty$$
 then $|G|_{\ell} \approx |G|$.

We need a tool that distinguishes edges with different resistances:

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}$
- \bullet let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06 (easy))

If
$$\sum_{e \in E} r(e) < \infty$$
 then $|G|_r \approx |G|$.

Kirchhoff's cycle law for wild circles

Theorem (Diestel & G)

The circles of an electrical network N satisfy Kirchhoff's cycle law if the sum of the resistances in N is finite.

The Theorem

Theorem (G '08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique non-elusive flow with finite energy that satisfies Kirchhoff's cycle law.

The Theorem

Theorem (G '08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique non-elusive flow with finite energy that satisfies Kirchhoff's cycle law.

Continuous version

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph Prescribe $\varphi: \partial G \to \mathbb{R}$

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph Prescribe $\varphi: \partial G \to \mathbb{R}$

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph Prescribe $\varphi: \partial G \to \mathbb{R}$

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph Prescribe $\varphi:\partial G\to\mathbb{R}$

Extend to $\varphi': G \to \mathbb{R}$ that is harmonic in G

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph Prescribe $\varphi:\partial G\to\mathbb{R}$

Extend to $\varphi': G \to \mathbb{R}$ that is harmonic in G i.e. satisfies Kirchhoff's node law

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi': X \to \mathbb{R}$ that is harmonic inside X $\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph Prescribe $\varphi: \partial G \to \mathbb{R}$

Extend to $\varphi': G \to \mathbb{R}$ that is harmonic in G i.e. satisfies Kirchhoff's node law Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)

Problem

For evey assignment $r: E \to \mathbb{R}_+$ (such that $|G|_r$ is compact) the Dirichlet problem is solvable for every continuous $\phi: \partial |G|_r \to \mathbb{R}$.

Problem

For evey assignment $r: E \to \mathbb{R}_+$ (such that $|G|_r$ is compact) the Dirichlet problem is solvable for every continuous $\phi: \partial |G|_r \to \mathbb{R}$.

Interesting because:

Theorem (Gromov '87 (indirect proof))

For every compact metric space X there is a locally finite graph G and $r: E \to \mathbb{R}_+$ such that $X = \partial |G|_r$.

Problem

For evey assignment $r: E \to \mathbb{R}_+$ (such that $|G|_r$ is compact) the Dirichlet problem is solvable for every continuous $\phi: \partial |G|_r \to \mathbb{R}$.

Problem

For evey assignment $r: E \to \mathbb{R}_+$ (such that $|G|_r$ is compact) the Dirichlet problem is solvable for every continuous $\phi: \partial |G|_r \to \mathbb{R}$.

The converse works:

Theorem

If $f: \vec{E} \to \mathbb{R}$ is a flow of finite energy in G satisfying Kirchhoff's cycle law then it is possible to extend the corresponding potentials continuously to $\partial |G|_r$.

Every edge e has a weight c(e)

Every edge e has a weight c(e)

Go from x to y with probability

$$P_{X \to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

Every edge e has a weight c(e)

Go from x to y with probability

$$P_{x \to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.

Every edge e has a weight c(e)

Go from x to y with probability

$$P_{X \to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in F} c(xv)$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.

$$c(e) <=> \frac{1}{r(e)}$$

Every edge e has a weight c(e)

Go from x to y with probability

$$P_{X \to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.

$$c(e) \ll \frac{1}{r(e)}$$

Connect a source of voltage 1 to p, q

Every edge e has a weight c(e)

Go from x to y with probability

$$P_{X \to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{vv \in F} c(xv)$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.

$$c(e) <=> \frac{1}{r(e)}$$

Connect a source of voltage 1 to p, q

$$\mathbb{P}_{pq}(x) = P(x)$$

$$\mathbb{P}_{pq}(x) = P(x)$$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q

$$\mathbb{P}_{pq}(x) = P(x)$$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q

$$\mathbb{P}_{pq}(x) = P(x)$$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q

$$\mathbb{P}_{pq}(x) = P(x)$$

 $\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q

Problem

Define brownian motion on $|G|_{\ell}$

Summary

Theorem (G '08)

In a network with $\sum_{e \in F} r(e) < \infty$ there is a unique 'good' current

Problem

Define brownian motion on $|G|_{\ell}$

Problem

Solve the Dirichlet Problem at the $|G|_{\ell}$ boundary

