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Cayley graphs

〈
α, β |, β2, α4, (αβ)2〉

Let Γ be a group, and S a generating set of Γ. Define the
corresponding Cayley graph G = Cay(Γ, S) by:

V (G) = Γ,
for every g ∈ Γ and s ∈ {a, b, c, . . .}, put in an edge:

g
• s−→

gs
•
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Sabidussi’s Theorem

Theorem (Sabidussi’s Theorem)
An edge-coloured digraph is a Cayley graph iff for
every x , y ∈ V (G) there is a colour-preserving
automorphism mapping x to y.

Let Γ be a group, and S a generating set of Γ. Define the
corresponding Cayley graph G = Cay(Γ, S) by:
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for every g ∈ Γ and s ∈ {a, b, c, . . .}, put in an edge:
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Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S2.
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The Cayley complex

Let Γ = 〈a, b, c, . . . | R1, R2 . . .〉 be a group presentation. Define
the corresponding Cayley complex CC 〈a, b, c, . . . | R1, R2 . . .〉
by:

V (G) = Γ,

for every g ∈ Γ and s ∈ {a, b, c, . . .}, put in an edge:
g
• s−→

gs
•

for every closed walk C induced by a relator Ri , glue in a
disc along C.

Given a planar Cayley graph, can you find a presentation in
which the relators induce precisely the face boundaries?

Yes! :

Theorem (Whitney)
Let G be a 3-connected plane graph. Then
every automorphism of G extends to a
homeomorphism of the sphere.
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

Generators: the edge-colours of G;
Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of Γ(G) by:

Theorem (easy)

The face boundaries of a plane graph G generate Cfin(G).

Moreover, the corresponding Cayley complex is homeomorphic
to S2. Thus:

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S2.
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The 1-ended planar groups

Theorem
Every 1-ended planar group is a group of isometries of
R2 or H2.
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Planar groups and fundamental groups of surfaces

Planar groups < − > fundamental groups of surfaces

... general classical theory, but only for VAP-free planar graphs

What about the non VAP-free ones?

Theorem (Thomassen ’80)

Let G be an infinite 2-connected graph. Then Cfin(G) has
a 2-basis if and only if G is VAP-free planar.
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What about the non VAP-free ones?

Open Problems:

Conjecture
(Mohar)
Every planar
locally finite
transitive graph
with > 1 ends is
obtainable by
(shift-)
amalgamation.

Problem (Droms et. al.)
Is there an effective
enumeration of the
planar locally finite
Cayley graphs?

Conjecture (Bonnington
& Mohar (unpublished))

Every planar
3-connected locally
finite transitive graph
has a finite face
boundary.

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
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Classification of the cubic planar Cayley graphs

Theorem (G ’10)
Let G be a planar cubic Cayley graph. Then G is
colour-isomorphic to precisely one element of the
list.

Conversely, for every element of the list and any
choice of parameters, the corresponding Cayley
graph is planar.
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〈
a, b | b2, a2n, (a2b)m

〉 〈
b, c, d | b2, c2, d2, (bcd)m; (bc)n

〉
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Planar presentations of groups

Corollary
Every planar cubic Cayley graph has
a planar presentation.

... a presentation of a planar group is called planar with respect
to an assignment f of spin flags if no two relations cross in f . It
is called just planar if there is an assignment of spin flags with
respect to which it is planar.

Agelos Georgakopoulos Planar Cayley graphs



Stallings’ Theorem

Theorem (Stallings)
Every group with >1 ends can be written as an amalgamation
product or an HNN-extension over a finite subgroup.
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Group splittings by contractible presentations

Conjecture
Every multi-ended Cayley graph G has a proper topological
minor which is a Cayley graph of a subgroup of Γ(G).

... in other words:
Conjecture

Let G = Cay 〈s1, . . . , sk | R〉 be a Cayley graph with >1
end. Then G has a k -contractible presentation.

... a presentation G = Cay 〈s1, . . . , sk | R′〉 is k -contractible, if
there are words S1, . . . , Sk with letters s1, . . . , sk , such that
every relator in R′ is a concatenation of the words Si .

Corollary
True for planar cubic Cayley graphs.
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Cayley graphs without finite face boundaries
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Cayley graphs without finite face boundaries

Agelos Georgakopoulos Planar Cayley graphs


