The planar cubic Cayley graphs

Agelos Georgakopoulos

Technische Universität Graz

13.9.10

$$\left<\alpha,\beta\mid,\beta^2,\alpha^4,(\alpha\beta)^2\right>$$

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha \beta)^2 \rangle$$

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha\beta)^2 \rangle$$

•
$$V(G) = \Gamma$$
,

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha\beta)^2 \rangle$$

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, ...\}$, put in an edge:

$$\stackrel{g}{\bullet} \stackrel{s}{\longrightarrow} \stackrel{gs}{\bullet}$$

Sabidussi's Theorem

Theorem (Sabidussi's Theorem)

An edge-coloured digraph is a Cayley graph iff for every $x, y \in V(G)$ there is a colour-preserving automorphism mapping x to y.

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, ...\}$, put in an edge:

Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2 .

Let $\Gamma = \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ by:

Let $\Gamma = \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \overset{s}{\longrightarrow} \overset{gs}{\bullet}$

Let $\Gamma = \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \overset{s}{\longrightarrow} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Let $\Gamma = \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Let $\Gamma = \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots \mid R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Yes!:

Theorem (Whitney)

Let G be a 3-connected plane graph. Then every automorphism of G extends to a homeomorphism of the sphere.

Given a finite plane Cayley graph *G*, consider the following group presentation:

Given a finite plane Cayley graph G, consider the following group presentation:

• Generators: the edge-colours of G;

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$ by:

Theorem (easy)

The face boundaries of a plane graph G generate $C_{fin}(G)$.

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$ by:

Theorem (easy)

The face boundaries of a plane graph G generate $C_{fin}(G)$.

Moreover, the corresponding Cayley complex is homeomorphic to S^2 . Thus:

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$ by:

Theorem (easy)

The face boundaries of a plane graph G generate $C_{fin}(G)$.

Moreover, the corresponding Cayley complex is homeomorphic to S^2 . Thus:

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2 .

The 1-ended planar groups

Theorem

Every 1-ended planar group is a group of isometries of \mathbb{R}^2 or \mathbb{H}^2 .

Planar groups < - > fundamental groups of surfaces

Planar groups < - > fundamental groups of surfaces

... general classical theory, but only for VAP-free planar graphs

Planar groups < - > fundamental groups of surfaces

... general classical theory, but only for VAP-free planar graphs

What about the non VAP-free ones?

Planar groups < - > fundamental groups of surfaces

... general classical theory, but only for VAP-free planar graphs

What about the non VAP-free ones?

Theorem (Thomassen '80)

Let G be an infinite 2-connected graph. Then $C_{fin}(G)$ has a 2-basis if and only if G is VAP-free planar.

Open Problems:

Conjecture (Mohar)

Every planar locally finite transitive graph with > 1 ends is obtainable by (shift-) amalgamation.

Open Problems:

Conjecture (Mohar)

Every planar locally finite transitive graph with > 1 ends is obtainable by (shift-) amalgamation.

Open Problems:

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Mohar)

Every planar locally finite transitive graph with > 1 ends is obtainable by (shift-) amalgamation.

Open Problems:

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Mohar (unpublished))

Every planar
3-connected locally
finite transitive graph
has a finite face
boundary.

Conjecture (Mohar)

Every planar locally finite transitive graph with > 1 ends is obtainable by (shift-) amalgamation.

Open Problems:

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Mohar (unpublished))

Every planar
3-connected locally
finite transitive graph
has a finite face
boundary.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

Conjecture (Mohar)

Every planar locally finite transitive graph with > 1 ends is obtainable by (shift-) amalgamation.

Open Problems:

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Mohar (unpublished))

Every planar
3-connected locally
finite transitive graph
has a finite face
boundary.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?

Classification of the cubic planar Cayley graphs

Theorem (G '10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of **the list**.

Classification of the cubic planar Cayley graphs

Theorem (G '10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.

Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.

$$\langle a, b \mid b^2, a^{2n}, (a^2b)^m \rangle$$

$$\langle a,b \mid b^2, a^{2n}, (a^2b)^m \rangle$$

$$\langle b, c, d \mid b^2, c^2, d^2, (bcd)^m; (bc)^n \rangle$$

Planar presentations of groups

Corollary

Every planar cubic Cayley graph has a planar presentation.

... a presentation of a planar group is called *planar with respect* to an assignment f of spin flags if no two relations cross in f. It is called just planar if there is an assignment of spin flags with respect to which it is planar.

Stallings' Theorem

Theorem (Stallings)

Every group with >1 ends can be written as an amalgamation product or an HNN-extension over a finite subgroup.

Group splittings by contractible presentations

Conjecture

Every multi-ended Cayley graph G has a proper topological minor which is a Cayley graph of a subgroup of $\Gamma(G)$.

Group splittings by contractible presentations

Conjecture

Every multi-ended Cayley graph G has a proper topological minor which is a Cayley graph of a subgroup of $\Gamma(G)$.

... in other words:

Conjecture

Let $G = Cay \langle s_1, \dots, s_k \mid \mathcal{R} \rangle$ be a Cayley graph with >1 end. Then G has a **k-contractible** presentation.

... a presentation $G = Cay \langle s_1, ..., s_k \mid \mathcal{R}' \rangle$ is k-contractible, if there are words $S_1, ..., S_k$ with letters $s_1, ..., s_k$, such that every relator in \mathcal{R}' is a concatenation of the words S_i .

Group splittings by contractible presentations

Conjecture

Every multi-ended Cayley graph G has a proper topological minor which is a Cayley graph of a subgroup of $\Gamma(G)$.

... in other words:

Conjecture

Let $G = Cay \langle s_1, \dots, s_k \mid \mathcal{R} \rangle$ be a Cayley graph with >1 end. Then G has a **k-contractible** presentation.

... a presentation $G = Cay \langle s_1, ..., s_k | \mathcal{R}' \rangle$ is k-contractible, if there are words $S_1, ..., S_k$ with letters $s_1, ..., s_k$, such that every relator in \mathcal{R}' is a concatenation of the words S_i .

Corollary

True for planar cubic Cayley graphs.

Cayley graphs without finite face boundaries

Cayley graphs without finite face boundaries

