Hyperbolic graphs, fractal boundaries, and graph limits

Agelos Georgakopoulos

Technische Universität Graz

Oberwolfach, 25.2.2010

Infinite graphs are interesting to:

Group theorists

- Group theorists
- Probabilists

- Group theorists
- Probabilists
- Dynamical systems theorists

- Group theorists
- Probabilists
- Dynamical systems theorists
- ...

- Group theorists
- Probabilists
- Dynamical systems theorists
- ...
- Finite graph theorists?

Ends

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

Ends

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

An interesting boundary

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

An interesting boundary

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

An 1-ended graph...

An interesting boundary

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

An 1-ended graph...

...with a large "hyperbolic boundary"

Equivalent definition

Equivalent definition

Definition (*Gromov '87*): A graph is hyperbolic if all its geodetic triangles are δ -thin for some fixed $\delta \in \mathbb{N}$.

Equivalent definition: A graph is hyperbolic if any two of its geodesics are either parallel or diverge exponentially.

Equivalent definition

Definition *(Gromov '87)*: A graph is hyperbolic if all its geodetic triangles are δ -thin for some fixed $\delta \in \mathbb{N}$.

Equivalent definition: A graph is hyperbolic if any two of its geodesics are either parallel or diverge exponentially.

Definition (*Gromov '87*): A finitely generated group is hyperbolic if one (=> each) of its Cayley graphs is hyperbolic.

Definition (*Gromov '87*): A finitely generated group is hyperbolic if one (=> each) of its Cayley graphs is hyperbolic.

Deep influence to group theory:

 almost every finitely generated group is hyperbolic (in a precise sense)

Definition (*Gromov '87*): A finitely generated group is hyperbolic if one (=> each) of its Cayley graphs is hyperbolic.

Deep influence to group theory:

- almost every finitely generated group is hyperbolic (in a precise sense)
- A group has a linear Dehn function iff it is hyperbolic

Definition (*Gromov '87*): A finitely generated group is hyperbolic if one (=> each) of its Cayley graphs is hyperbolic.

Deep influence to group theory:

- almost every finitely generated group is hyperbolic (in a precise sense)
- A group has a linear Dehn function iff it is hyperbolic
- Hyperbolic groups have a solvable word problem

Definition (*Gromov '87*): A finitely generated group is hyperbolic if one (=> each) of its Cayley graphs is hyperbolic.

Deep influence to group theory:

- almost every finitely generated group is hyperbolic (in a precise sense)
- A group has a linear Dehn function iff it is hyperbolic
- Hyperbolic groups have a solvable word problem
- ...

The hyperbolic boundary $\partial^h G$:

The hyperbolic boundary $\partial^h G$:

consists of equivalence classes of geodesics,

The hyperbolic boundary $\partial^h G$:

consists of equivalence classes of geodesics, where two geodesics are equivalent if they are parallel

The hyperbolic boundary $\partial^h G$:

consists of equivalence classes of geodesics, where two geodesics are equivalent if they are parallel

Metric on $\partial^h G$:

$$d_{V}([\sigma], [\tau]) := exp(-|max common subpath of \sigma, \tau|)$$
 (roughly)

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

i.e. $\partial^h G$ can be "almost everything"!

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

i.e. $\partial^h G$ can be "almost everything"!

... but can it be the limit of a sequence of finite graphs?

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Kaimanovich's construction of the Sierpinski gasket as the hyperbolic boundary of a graph

$$B = \langle a, b \mid ...\infty... \rangle$$

$$B = \langle a, b \mid ... \infty ... \rangle$$

$$a := \bigwedge_{b}^{T}$$

$$B = \langle a, b \mid ... \infty ... \rangle$$

$$b := x z y + \bigwedge_{a \quad id}$$

What is the limit of this sequence?

What is the limit of this sequence? Two answers!

What is the limit of this sequence?
Two answers!

Answer 1:

What is the limit of this sequence? Two answers!

Answer 1:

An infinite graph

What is the limit of this sequence?

Two answers!

Answer 1:

An infinite graph

Answer 2:

What is the limit of this sequence?

Two answers!

Answer 1:

An infinite graph

Answer 2:

The Julia set of $z^2 = 1 \longrightarrow 2$

Theorem (Nekrashevych '05)

The hyperbolic boundary of the self-similarity graph of the Basilica group is $J(z^2 - 1)$

Theorem (Nekrashevych '05)

The hyperbolic boundary of the self-similarity graph of the Basilica group is $J(z^2 - 1)$

Theorem (Nekrashevych '05)

The hyperbolic boundary of the self-similarity graph of the Basilica group is $J(z^2 - 1)$

Theorem (Nekrashevych '05)

The Basilica group is the iterated monodromy group of the complex polynomial $z^2 - 1$

Theorem (Nekrashevych '05)

The hyperbolic boundary of the self-similarity graph of the Basilica group is $J(z^2 - 1)$

Theorem (Nekrashevych '05)

The Basilica group is the iterated monodromy group of the complex polynomial $z^2 - 1$

Nekrashevych proved that certain groups are non-isomorphic by comparing the boundaries of their self-similarity graphs

Pick a root r_i in each finite graph G_i ;

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

you get a limit infinite graph with the same balls.

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

you get a limit infinite graph with the same balls.

Theorem (D' Angeli, Donno, Matter and Nagnibeda '09)

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

you get a limit infinite graph with the same balls.

Theorem (D' Angeli, Donno, Matter and Nagnibeda '09)

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

you get a limit infinite graph with the same balls.

Theorem (D' Angeli, Donno, Matter and Nagnibeda '09)

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

you get a limit infinite graph with the same balls.

Theorem (D' Angeli, Donno, Matter and Nagnibeda '09)

Pick a root r_i in each finite graph G_i ;

If for every R the balls of radius R around r_i "converge"...

you get a limit infinite graph with the same balls.

Theorem (D' Angeli, Donno, Matter and Nagnibeda '09)

The limit graph has 1, 2, or 4 ends.

Limit graphs have been used to study the Abelian Sandpile Model.

What is the limit of this sequence?

Two answers!

Answer 1:

Answer 1:

An infinite graph

Answer 2:

The Julia set of $z^2 = 1 \longrightarrow 2$

Idea: Rescale edge-lengths!

Idea: Rescale edge-lengths!

Give edges of level n length

$$\ell(e) = \rho^{-n}$$

Idea: Rescale edge-lengths!

Give edges of level n length $\ell(e) = \rho^{-n}$

-> defines a metric d_{ℓ} on the graph

Idea: Rescale edge-lengths!

Give edges of level n length $\ell(e) = \rho^{-n}$

- -> defines a metric d_{ℓ} on the graph
- -> Let $|G|_{\ell}$ (called ℓ -TOP) denote the completion.

Idea: Rescale edge-lengths!

Give edges of level n length $\ell(e) = \rho^{-n}$

- -> defines a metric d_ℓ on the graph
- -> Let $|G|_{\ell}$ (called ℓ -TOP) denote the completion.

Theorem (Gromov '87)

If G is hyperbolic then there is a ρ such that $|G|_{\ell}$ is homeomorphic to the hyperbolic compactification of G.

Idea: Rescale edge-lengths!

Give edges of level n length $\ell(e) = \rho^{-n}$

- -> defines a metric d_{ℓ} on the graph
- -> Let $|G|_{\ell}$ (called ℓ -TOP) denote the completion.

Theorem (G' 06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell}$ is homeomorphic to the end-compactification |G| of G.

Idea: Rescale edge-lengths!

Give edges of level n length $\ell(e) = \rho^{-n}$

- -> defines a metric d_ℓ on the graph
- -> Let $|G|_{\ell}$ (called ℓ -TOP) denote the completion.

Theorem (G' 06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell}$ is homeomorphic to the end-compactification |G| of G.

Holds for non-hyperbolic graphs too, and no "spherical symmetry" needed.

Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ (ℓ -TOP)

Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ (ℓ -TOP)

• used by Floyd to study Kleinian groups (Invent. math. '80)

Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ (ℓ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)

Applications of $|G|_{\ell}$ (ℓ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- applied to electrical networks (G '09)

Applications of $|G|_{\ell}$ (ℓ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- applied to electrical networks (G '09)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)

Applications of $|G|_{\ell}$ (ℓ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- applied to electrical networks (G '09)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)

Applications of $|G|_{\ell}$ (ℓ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- applied to electrical networks (G '09)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)

All above authors "discovered" $|G|_{\ell}$ independently!

Graph boundaries and topology

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Graph boundaries and topology

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Theorem (G '08)

A metric space X is isometric to the $|G|_{\ell}$ boundary of some connected locally finite graph iff X is complete and separable.

(separable:= has a countable dense subset)

Graph boundaries and topology

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Theorem (G '08)

A metric space X is isometric to the $|G|_{\ell}$ boundary of some connected locally finite graph iff X is complete and separable.

(separable:= has a countable dense subset)

Can you use this to get topological results?

Hyperbolic boundary and topology

Kaimanovich's construction of the Sierpinski gasket as the hyperbolic boundary of a graph

Topological paths/circles in |G|

Circle:

A homeomorphic image of S^1 in |G|.

the wild circle of Diestel & Kühn

The Hahn-Mazurkiewicz Theorem

Theorem (The Hahn-Mazurkiewicz Theorem)

A Hausdorff space is a continuous image of the real unit interval iff it is a compact, connected, locally connected metrizable space.

Use graph boundaries to solve topological problems

- Use graph boundaries to solve topological problems
- Construct Brownian Motion as a limit of Random Walks on finite graphs

- Use graph boundaries to solve topological problems
- Construct Brownian Motion as a limit of Random Walks on finite graphs
- Construct limits of sequences of finite (sparse?) graphs as hyperbolic boundaries and use them to obtain graph-theoretical results

- Use graph boundaries to solve topological problems
- Construct Brownian Motion as a limit of Random Walks on finite graphs
- Construct limits of sequences of finite (sparse?) graphs as hyperbolic boundaries and use them to obtain graph-theoretical results
- Construct limits of finite random graphs and study phase transition

References

Further reading:

- Ends, |G|, etc.: Diestel, http://www.math.unihamburg.de/home/diestel/papers/TopSurvey.pdf
- Definitions and basic facts on hyperbolic graphs: H. Short, http://www.cmi.univ-mrs.fr/~hamish/
- Survey on hyperbolic boundaries of groups: Kapovich & Benakli (with 200 further references)
- Basilica group: Nagnibeda et. al., http://arxiv.org/abs/0911.2915
- Self-similarity graphs, Julia sets: Nekrashevych' book, http://www.ams.org/bookpages/surv-117/
- Survey on ℓ-TOP: Georgakopoulos, http://arxiv.org/abs/0903.1744

Summary

What is the limit of this sequence?

Two answers!

Answer 2:

Theorem (Gromov '87)

If G is hyperbolic then there is a ρ such that $|G|_{\ell}$ is homeomorphic to the hyperbolic compactification of G.

