The planar cubic Cayley graphs

Agelos Georgakopoulos

Technische Universität Graz

Paris, 17.02.11

$$\left<\alpha,\beta\mid,\beta^2,\alpha^4,(\alpha\beta)^2\right>$$

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha \beta)^2 \rangle$$

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha\beta)^2 \rangle$$

•
$$V(G) = \Gamma$$
,

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha\beta)^2 \rangle$$

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge:

$$\stackrel{g}{\bullet} \stackrel{s}{\longrightarrow} \stackrel{gs}{\bullet}$$

Sabidussi's Theorem

Theorem (Sabidussi's Theorem)

A properly edge-coloured digraph is a Cayley graph iff for every $x, y \in V(G)$ there is a colour-preserving automorphism mapping x to y.

properly edge-coloured := no vertex has two incoming or two outgoing edges with the same colour

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, ...\}$, put in an edge:

$$\stackrel{g}{\bullet} \stackrel{s}{\longrightarrow} \stackrel{gs}{\bullet}$$

Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2 .

planar group := a group having at least 1 planar Cayley graph.

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \overset{s}{\longrightarrow} \overset{gs}{\bullet}$

Let
$$\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$$
 be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \overset{s}{\longrightarrow} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Let
$$\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$$
 be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, ...\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Let
$$\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$$
 be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, ...\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Yes!

Given a finite plane Cayley graph *G*, consider the following group presentation:

Given a finite plane Cayley graph *G*, consider the following group presentation:

• Generators: the edge-colours of G;

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Theorem (Whitney '32)

Let G be a 3-connected plane graph. Then every automorphism of G extends to a homeomorphism of the sphere.

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let *X* be the corresponding simplified Cayley complex.

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let *X* be the corresponding simplified Cayley complex.

X is homeomorphic to S^2

Given a finite plane Cayley graph *G*, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let *X* be the corresponding simplified Cayley complex.

X is homeomorphic to S^2

Since $\Gamma(G)$ acts on X, we have:

Theorem (Maschke 1886)

Every finite planar group is a group of homeomorphisms of S^2 .

The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2 .

The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2 .

Planar groups <-> fundamental groups of surfaces

Planar groups < - > fundamental groups of surfaces

... general classical theory, but only for groups with a planar simplified Cayley complex

Planar groups < - > fundamental groups of surfaces

... general classical theory, but only for groups with a planar simplified Cayley complex

What about the other ones?

Planar groups < - > fundamental groups of surfaces

... general classical theory, but only for groups with a planar simplified Cayley complex

What about the other ones?

Theorem (G '10)

A group has a planar simplified Cayley complex if and only if it has a VAP-free Cayley graph.

Open Problems:

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/ B. & Mohar)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/ B. & Mohar)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/ B. & Mohar)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?

Classification of the cubic planar Cayley graphs

Theorem (G '10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of **the list**.

Classification of the cubic planar Cayley graphs

Theorem (G '10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.

Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?

Corollary (G'10

Every planar cubic Cayley graph has an almost planar Cayley complex.

Corollary (G & Hamann '11)

Every planar Cayley graph has an almost planar Cayley complex.

Corollary (G & Hamann '11)

Every planar Cayley graph has an almost planar Cayley complex... maybe

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Conjecture (Bonnington & Watkins)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

FALSE!

Spot the societies!

Spot the societies!

Stallings' Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Stallings' Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Stallings' Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Corollary (G '10)

True for planar cubic Cayley graphs.

Summary

