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Cayley graphs

〈
α, β |, β2, α4, (αβ)2〉

Let Γ be a group, and S a generating set of Γ. Define the
corresponding Cayley graph G = Cay(Γ, S) by:

V (G) = Γ,
for every g ∈ Γ and s ∈ {a, b, c, . . .}, put in an edge:

g
• s−→

gs
•
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Sabidussi’s Theorem

Theorem (Sabidussi’s Theorem)
A properly edge-coloured digraph is a Cayley
graph iff for every x , y ∈ V (G) there is a
colour-preserving automorphism mapping x to y.

properly edge-coloured := no vertex has two incoming or two
outgoing edges with the same colour

Let Γ be a group, and S a generating set of Γ. Define the
corresponding Cayley graph G = Cay(Γ, S) by:

V (G) = Γ,
for every g ∈ Γ and s ∈ {a, b, c, . . .}, put in an edge:

g
• s−→

gs
•
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Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S2.

planar group := a group having at least 1 planar Cayley graph.
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The Cayley complex

Let Γ = 〈a, b, c, . . . | R1, R2 . . .〉 be a group presentation.
Define the corresponding simplified Cayley complex

CC 〈a, b, c, . . . | R1, R2 . . .〉 by:

V (G) = Γ,

for every g ∈ Γ and s ∈ {a, b, c, . . .}, put in an edge:
g
• s−→

gs
•

for every closed walk C induced by a relator Ri , glue in a
disc along C.

Given a planar Cayley graph, can you find a presentation in
which the relators induce precisely the face boundaries?

Yes!
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

Generators: the edge-colours of G;
Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of Γ(G)

Let X be the corresponding simplified Cayley complex.

X is homeomorphic to S2

Since Γ(G) acts on X , we have:

Theorem (Maschke 1886)

Every finite planar group is a group of homeomorphisms of S2.
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The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)
Every 1-ended planar Cayley graph corresponds
to a group of isometries of R2 or H2.

quasi_6_4.gif (GIF Image, 560x420 pixels) http://www.math.cornell.edu/~mec/Winter2009/Mihai/section...
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Planar groups and fundamental groups of surfaces

Planar groups < − > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
simplified Cayley complex

What about the other ones?

Theorem (G ’10)
A group has a planar simplified Cayley complex if
and only if it has a VAP-free Cayley graph.

Agelos Georgakopoulos Planar Cayley graphs



Planar groups and fundamental groups of surfaces

Planar groups < − > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
simplified Cayley complex

What about the other ones?

Theorem (G ’10)
A group has a planar simplified Cayley complex if
and only if it has a VAP-free Cayley graph.

Agelos Georgakopoulos Planar Cayley graphs



Planar groups and fundamental groups of surfaces

Planar groups < − > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
simplified Cayley complex

What about the other ones?

Theorem (G ’10)
A group has a planar simplified Cayley complex if
and only if it has a VAP-free Cayley graph.

Agelos Georgakopoulos Planar Cayley graphs



Planar groups and fundamental groups of surfaces

Planar groups < − > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
simplified Cayley complex

What about the other ones?

Theorem (G ’10)
A group has a planar simplified Cayley complex if
and only if it has a VAP-free Cayley graph.

Agelos Georgakopoulos Planar Cayley graphs



What about the non VAP-free ones?

Open Problems:

Problem (Mohar)

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?

Problem (Droms et. al.)

Is there an effective
enumeration of the
planar locally finite
Cayley graphs?

Conjecture (Bonnington
& Watkins/ B. &Mohar)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
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Classification of the cubic planar Cayley graphs

Theorem (G ’10)
Let G be a planar cubic Cayley graph. Then G is
colour-isomorphic to precisely one element of the
list.

Conversely, for every element of the list and any
choice of parameters, the corresponding Cayley
graph is planar.

Agelos Georgakopoulos Planar Cayley graphs



Classification of the cubic planar Cayley graphs

Theorem (G ’10)
Let G be a planar cubic Cayley graph. Then G is
colour-isomorphic to precisely one element of the
list.
Conversely, for every element of the list and any
choice of parameters, the corresponding Cayley
graph is planar.

Agelos Georgakopoulos Planar Cayley graphs



What about the non VAP-free ones?

Open Problems:
Problem (Mohar)

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?

Problem (Droms et. al.)

Is there an effective
enumeration of the
planar locally finite
Cayley graphs?

Conjecture (Bonnington
& Watkins)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?

Agelos Georgakopoulos Planar Cayley graphs



Examples

Agelos Georgakopoulos Planar Cayley graphs



Examples

Agelos Georgakopoulos Planar Cayley graphs



Examples

Agelos Georgakopoulos Planar Cayley graphs



Examples

Agelos Georgakopoulos Planar Cayley graphs



Examples

Corollary (G ’10

G & Hamann ’11

)
Every planar cubic Cayley graph has
an almost planar Cayley complex.

..
maybe
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Cayley graphs without finite face boundaries

Conjecture (Bonnington
& Watkins)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

FALSE!

Agelos Georgakopoulos Planar Cayley graphs



Cayley graphs without finite face boundaries

Conjecture (Bonnington
& Watkins)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

FALSE!

Agelos Georgakopoulos Planar Cayley graphs



Cayley graphs without finite face boundaries

Agelos Georgakopoulos Planar Cayley graphs



Cayley graphs without finite face boundaries

Agelos Georgakopoulos Planar Cayley graphs



Cayley graphs without finite face boundaries

Agelos Georgakopoulos Planar Cayley graphs



Spot the societies!
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Stallings’ Theorem

Theorem (Stallings ’71)
Every group with >1 ends can be written as an
HNN-extension or an amalgamation product
over a finite subgroup.

Figure 3: A portion of the Cayley graph of HNN G A B ψ

the Cayley graph of G with respect to X . If X is any other finite generating set for
G, then the number of ends of C G X is the same as that of C G X , and so we
refer to this number as the number of ends of G. It is well-known that the number of
ends of a finitely generated group is either 0 (in case G is finite), 1 (for example, if
G ), 2 (if G is virtually infinite cyclic) or uncountably infinite (if G is free of
rank two, for example.)

Stallings’s Theorem [15, 16] states that any finitely generated group with more than
one end is either a nontrivial free product with finite amalgamated subgroups, or an
HNN extension with finite associated subgroups—that is, G is the fundamental group
of a graph of groups which has one edge, where the edge group is finite.

Given a subgraph f of a graph Γ, we define f to be the subgraph of Γ spanned by
the vertices which do not belong to f . We call f the complement of f . The set of edges
which belong neither to f nor to f (that is, the set of edges which have one endpoint
in f and the other in f ) is called the coboundary of f , and is denoted δ f . Note that
δ f δ f .

Let C be a Cayley graph for G, and suppose that G (and hence C ) has more than
one end. Then there is a cut in C : that is, an infinite connected subgraph e0 whose
complement e0 is also connected and infinite, and whose coboundary is finite. Let
E ge0 g G ge0 g G . Then there is an equivalence relation on E , defined
as follows: given x and y in E , we set x y if x is, among elements of E , a maximal
proper subset of y. (Note that x x for all x, and that if x y, then δx is disjoint from
y.) Let V denote the set of –classes.

Lemma 3.1 [5, 6] The sets V and E are, respectively, the vertex and edge sets of an
undirected tree T , on which G acts. Each pair x x E represents the two possible

5
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Group splittings by topological minors

Conjecture

Let G = Cay(Γ, S) be a Cayley graph with
> 1 ends. Then there is a non-trivial
splitting of G as a union of subdivisions of
Cayley graphs.

Corollary (G ’10)
True for planar cubic Cayley graphs.
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Summary
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κ(G) = 1 1.
〈

a, b | b2, an
〉

, n ∈ {∞, 2, 3, . . .}

2.
〈

b, c, d | b2, c2, d2, (bc)n
〉

, n ∈ {∞, 1, 2, 3, . . .}

κ(G) = 2

3. G ∼= Cay
〈

a, b | b2, (ab)n
〉

, n ≥ 2

4. G ∼= Cay
〈

a, b | b2, (aba−1b−1)n
〉

, n ≥ 1

5. G ∼= Cay
〈

a, b | b2, a4, (a2b)2
〉

6. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bc)2, (bcd)m
〉

, m ≥ 2

7. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bc)2n, (cbcd)m
〉

, n, m ≥ 2

8. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bc)n, (bd)m
〉

, n, m ≥ 2

9. G ∼= Cay
〈

b, c, d | b2, c2, d2, (b(cb)nd)m
〉

, n ≥ 1, m ≥ 2

10. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcbd)m
〉

, m ≥ 1

11. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bc)n, cd
〉

, n ≥ 1

κ(G) = 3,
G is 1-ended or finite,
with two generators

12. G ∼= Cay
〈

a, b | b2, an, (ab)m
〉

, n ≥ 3, m ≥ 2

13. G ∼= Cay
〈

a, b | b2, an, (aba−1b)m
〉

, n ≥ 3, m ≥ 1

14. G ∼= Cay
〈

a, b | b2, (a2b)m
〉

, m ≥ 1

15. G ∼= Cay
〈

a, b | b2, (a2ba−2b)m
〉

, m ≥ 1

κ(G) = 3,
G is 1-ended or finite,
with three generators

16. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcd)n
〉

, n ≥ 1

17. G ∼= Cay
〈

b, c, d | b2, c2, d2, (cbcdbd)n
〉

, n ≥ 1

18. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bc)n, (bdcd)m
〉

, n ≥ 2, m ≥ 1

19. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p
〉

, n, m, p ≥ 2

κ(G) = 3,
G is multi-ended,
with two generators

20. G ∼= Cay
〈

a, b | b2, (a2b)m; a2n
〉

, n ≥ 3, m ≥ 2

21. G ∼= Cay
〈

a, b | b2, (a2ba−2b)m; a2n
〉

, n ≥ 3, m ≥ 1

22. G ∼= Cay
〈

a, b | b2, a2ba−2b; (baba−1)n
〉

, n ≥ 2

23. G ∼= Cay
〈

a, b | b2, (a2ba−2b)m; (baba−1)n
〉

, n, m, p ≥ 2

24. G ∼= Cay
〈

a, b | b2, (a2b)2; (ab)2m
〉

, m ≥ 2

25. G ∼= Cay
〈

a, b | b2, (a2b)n; (ab)2m
〉

, n ≥ 3, m ≥ 2

κ(G) = 3,
G is multi-ended,
with three generators

26. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcd)m; (bc)n
〉

, n ≥ 2, m ≥ 2

27. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcdcbd)m; (bc)n
〉

, n ≥ 2, m ≥ 1

28. G ∼= Cay
〈

b, c, d | b2, c2, d2, (cd)m, (dbcb)p; (bc)2n
〉

, n, m, p ≥ 2

29. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcbdcd)m; (bc)2n
〉

, n ≥ 2, m ≥ 1

30. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcbdcd)p; (dc)2n, (bc)2m
〉

, n, m, p ≥ 2

31. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcbdcd)p; (dbcb)2n, (bc)2m
〉

, n, m, p ≥ 2

32. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcd)2; (bcdc)n
〉

, n ≥ 2

33. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bcd)k;P
〉

, k ≥ 3,
P is a non-crossing pattern

34. G ∼= Cay
〈

b, c, d | b2, c2, d2;P
〉

,
P is a non-regular non-crossing pattern

35. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bdbcdc)k; (c(bc)nd)2m
〉

, k ≥ 2,
n, m ≥ 1, n + m ≥ 3

36. G ∼= Cay
〈

b, c, d | b2, c2, d2, (bdbcdc)q; (c(bc)n−1d)2m, (c(bc)nd)2r
〉

,
n, r, m, q ≥ 2

37. G ∼= Cay
〈

b, c, d | b2, c2, d2; (c(bc)n−1d)2m, (c(bc)nd)2r
〉

, n, r, m ≥ 2

Table 1: Classification of the cubic planar Cayley graphs. All presentations are
planar in the sense of Section 1.4.
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