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The circle packing theorem

The Koebe-Andreev-Thurston circle packing theorem

For every finite planar graph G, there is a circle packing in the
plane (or S2) with nerve G.
The packing is unique (up to Möbius transformations) if G is a
triangulation of S2.
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The Riemann mapping theorem

Theorem (Riemann? ’1851, Carathéodory 1912)
For every simply connected open set Ω & C,Ω , ∅, there is a
bijective conformal map from Ω onto the open unit disk.

Theorem (Koebe 1908)
For every open set Ω & C,Ω , ∅ with finitely many

boundary components, there is a bijective
conformal map from Ω onto a circle domain.
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Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem
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Circle Packing => Conformal map
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Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion 

to a triangulation of 52, and a combinatorially equivalent circle packing; (a)-(c) are from Oded's 

thesis; thanks to Andrey Mishchenko for creating (d) 

6 

[S. Rohde: “Oded Schramm: From Circle Packing to SLE”, ’10]
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Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)
... for every finite planar graph G, there is a
square tiling with incidence graph G ...
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Properties of square tilings

every edge is mapped to a square;
vertices correspond to horizontal segments tangent with
their edges;
there is no overlap of squares, and no ‘empty’ space left;
the square tiling of the dual of G can be obtained from that
of G by a 90◦ rotation.
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The construction of square tilings

Think of the graph as an electrical network;

impose an electrical current from p to q;
let the square corresponding to edge e have side length
the flow i(e);
place each vertex x at height equal to the potential h(x);
use a duality argument to determine the width coordinates.
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The construction of square tilings

[J. W. Cannon, W. J. Floyd, and W. R. Parry: “Squaring rectangles:
The finite Riemann mapping theorem."]
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The square tilings of Benjamini & Schramm

Theorem (Benjamini & Schramm ’96)
Every transient (infinite) graph G of bounded degree that has a
uniquely absorbing embedding in the plane admits a square tiling.

Moreover, random walk on G converges a. s. to a point in C.

C
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The Poisson integral representation formula

The classical Poisson formula

h(z) =
∫ 1

0
ĥ(θ)P(z, θ)dθ

=

∫ 1

0
ĥ(θ)dνz(θ)

where P(z, θ) := 1−|z |2

|e2πiθ−z |2 ,

recovers every continuous harmonic
function h on D from its boundary
values ĥ on the circle ∂D.
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The boundary of the square tiling coincides with the
Poisson boundary

Can the bounded harmonic functions on a plane graph
G be expressed as a Poisson-like integral using C?

A function h : V (G)→ R,
is harmonic, if h(x) =

∑
y∼x h(y )/d(x).
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The boundary of the square tiling coincides with the
Poisson boundary

Question (Benjamini & Schramm ’96)
Does the Poisson boundary of every graph as above
coincide with the boundary of its square tiling?

Theorem (G ’12)

Yes!
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The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (PG,Σ), and

- a family of probability measures {νz , z ∈ VG},
such that

every bounded harmonic function h can be obtained by

h(z) =
∫
PG

ĥ(η)dνz(η)

this ĥ ∈ L∞(PG) is unique up to modification on a null-set;
conversely, for every ĥ ∈ L∞(PG) the function
z 7→

∫
PG

ĥ(η)dνz(η) is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry
between the Banach spaces H∞(G) and L∞(PG).
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The Poisson-Furstenberg boundary

Selected work on the Poisson boundary

Introduced by Furstenberg to study semi-simple
Lie groups [Annals of Math. ’63]
Kaimanovich & Vershik give a general criterion using the
entropy of random walk [Annals of Probability ’83]
Kaimanovich identifies the Poisson boundary of hyperbolic
groups, and gives general criteria [Annals of Math. ’00]
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The theorem

Theorem (G ’12)
For every bounded degree graph admitting a square tiling, the
Poisson boundary coincides with the boundary of the tiling.
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Outlook

Use the same technique to identify the Poisson boundary
in further cases

Generalise square tilings to non-planar graphs

Nice random graphs can be sampled from the
(square of the) Poisson boundary of groups
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