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Problem 1: A mailman wants to deliver a letter to each vertex
of a finite graph. If he performs a random walk, what is his
expected number of steps until all letters are delivered?

Problem 2: A truck-driver wants to distribute 1 ton of goods
equally over all vertices of the graph. If she performs a random
walk, what is the expected total weight she will carry?

Which problem is harder?
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The Cover Time problem is hard

Theorem (Ding Lee & Peres, Ann. Math.’12)

There is a polynomial time
algorithm approximating CT (G)
up to a multiplicative factor.

Theorem (G ’12)

There is an O(n4) algorithm computing cc(G) (exactly).

Clearly, CT /n < cc < CT .
How much larger than cc can CT be?
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Cover Time

The Cover Time of a graph is being studied in several
disciplines:

many applications in computer science
–universal traversal sequences [Lovász et.al.]
–testing graph connectivity [Lovász et.al., Karlin & Raghavan]
–protocol testing [Mihail & Papadimitriou]
physicists study the fractal structure of the uncovered set
of a finite grid
cover time of Brownian motion on Riemannian manifolds
[Dembo, Peres, Rosen & Zeitouni]

Theorem (G & P. Winkler ’11)

The cover time of a graph on L edges is at most 2L2.
The cover time for Brownian motion on graph of total
length L is at most 2L2.
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Cover Cost and the Wiener Index

Theorem (G & S. Wagner ’12+)
For every tree we have∑

y∈V (T )

(
Hry + d(r , y )

)
= 2W (T ) :=

∑
x ,y∈V (T ) d(x , y ).

in other words:
CC(r ) + D(r ) = 2W (T )

Corollary
The extremal rooted trees on n vertices for CC(r )
are the path rooted at a midpoint (maximum) and
the star rooted at a leaf (minimum).
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Cover Cost and the Wiener Index

Similarly to CC(r ) we define the the reverse cover cost

RC(r ) =
∑

y∈V (G)

Hyr

Theorem (G & Wagner ’12+)
For every tree T , the quantity

RC(r ) + (2n − 1)CC(r )

= 4(n − 1)W (T )

is independent of r .

Thus a vertex r that maximizes CC(r )
minimizes RC(r ) and vice versa.

Proof based on Hxy + Hyx = Tx↔y = 2mr (x , y ) (by the
commute time formula of Chandra et. al.)
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Vertex orderings - Trees

Theorem (classic)
the vertices of any graph can be put in a linear preorder so that for
random walk on the graph vertices appearing earlier in the
preorder are “easier to reach but more difficult to get out of” and
the other way round.

Theorem (G & Wagner ’12+)

For every tree T , and every pair of vertices x , y ∈ V (T ), TFAE:

1 D(x) ≤ D(y );
2 Dπ(x) ≤ Dπ(y );
3 Hyx ≤ Hxy ;

4 RCπ(x) ≤ RCπ(y );
5 RC(x) ≤ RC(y );
6 CC(x) ≥ CC(y ).
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Vertex orderings - General graphs

The Kirchhoff index (or quasi-Wiener index) is defined as

K (G) :=
∑

{x ,y }⊆V (G)

r (x , y ) =
1
2

∑
x∈V (G)

∑
y∈V (G)

r (x , y ).

Theorem (G & Wagner ’12+)

For every graph G, and every vertex x ∈ V (G), we have

CC(x) = mR(x) −
n
2

Rπ(x) + Kπ(G),

RC(x) = mR(x) +
n
2

Rπ(x) − Kπ(G),

RCπ(x) = 2mRπ(x) − Kπ2(G), and
CCπ(x) = Kπ2(G).
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Eigenvalue formulas

The fact that CCπ(x) is constant was already known; moreover, it can
be expressed in terms of the eigenvalues of the matrix M of transition
probabilities of G as CCπ(x) = 2m

∑n
k=2

1
1−λk

Combined with the last theorem, this yields

Kπ2(G) = 2m
n∑

k=2

1
1 − λk

.

Interestingly, a similar formula applies to the Kirchhoff index:

K (G) = n
∑
λ,0

1
λ
,

the sum being over all nonzero Laplacian eigenvalues of G
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Problems

Is every reversible graph regular?
(A graph is reversible if Rπ is constant)

Which numbers appear as Rπ of some reversible graph?

What are the extremal rooted n-vertex graphs for CC(r )?

In a large graph, how can you change Rπ(x) a lot by
attaching few new edges to x?
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