Some results on the interplay between random walks and electrical networks

Agelos Georgakopoulos

University of Warwick

11/10/12

Electrical Network Reduction

Theorem (G & V. Kaimanovich '11)

Let N be an electrical network and B its set of external nodes. Then there is an equivalent network with vertex set B in which each edge (a, b) has conductance

$$C_{eff}(a,b) = d(a)\mathbb{P}_a(b).$$

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u} : B \to \mathbb{R}$.

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u} : B \to \mathbb{R}$.

Find: an extension $u: V \to \mathbb{R}$ harmonic on internal nodes $(V \setminus B)$.

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u} : B \to \mathbb{R}$.

Find: an extension $u: V \to \mathbb{R}$ harmonic on internal nodes $(V \setminus B)$.

Solution [Doyle & Snell]: Let

 $u(x) = \mathbb{E}[\hat{u}(b) \mid \text{ random walk from x exits at b}]$

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u} : B \to \mathbb{R}$.

Find: an extension $u: V \to \mathbb{R}$ harmonic on internal nodes $(V \setminus B)$.

Solution [Doyle & Snell]: Let

 $u(x) = \mathbb{E}[\hat{u}(b) \mid \text{ random walk from x exits at b}]$

Solution 2: Start $d(b)\hat{u}(b)$ particles at each $b \in B$, kill them upon returning to B, and let

$$u(x) = \frac{\mathbb{E}[\# \text{ visits to } x]}{d(x)}$$

Groups and Random Walk

Theorem (Kesten '59)

Let Γ be a group generated by a finite set S and let N be a normal subgroup of Γ . Then the following are equivalent:

- $\rho(Cay(\Gamma/N, S)) = \rho(Cay(\Gamma, S));$
- N is amenable.

 $ρ(Γ) := \lim_n (p_{x,x,2n})^{1/2n}$ is the *spectral radius* of RW on Γ.

Transience vs. Recurrence

Transience is a group invariant:

Theorem (Markvorsen, Guinness & Thomassen '92)

All locally finite Cayley graphs of a finitely generated group are of the same type.

Transience vs. Recurrence

Transience is a group invariant:

Theorem (Markvorsen, Guinness & Thomassen '92)

All locally finite Cayley graphs of a finitely generated group are of the same type.

Theorem (T. Lyons '83)

Random Walk on a graph G is transient

<=>

there is a flow of finite **energy** from some vertex o to infinity.

Energy
$$E(i) := \sum_{xy \in E(G)} i(xy)^2$$

For any infinite graph G, we construct a measure space C = C(G) that allows expressing the energy of harmonic functions as an integral on the boundary:

For any infinite graph G, we construct a measure space C = C(G) that allows expressing the energy of harmonic functions as an integral on the boundary:

Theorem (G & V. Kaimanovich '12+)

For every transient locally finite network N there is a measure C on \mathcal{P}^2 such that for every harmonic function u with boundary function u,

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta)\right)^2 dC(\eta, \zeta).$$

For any infinite graph G, we construct a measure space C = C(G) that allows expressing the energy of harmonic functions as an integral on the boundary:

Theorem (G & V. Kaimanovich '12+)

For every transient locally finite network N there is a measure C on \mathcal{P}^2 such that for every harmonic function u with boundary function u,

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 dC(\eta, \zeta).$$

Energy
$$E(u) := \sum_{x \sim y} (u(x) - u(y))^2$$

For any infinite graph G, we construct a measure space C = C(G) that allows expressing the energy of harmonic functions as an integral on the boundary:

Theorem (G & V. Kaimanovich '12+)

For every transient locally finite network N there is a measure C on \mathcal{P}^2 such that for every harmonic function u with boundary function u,

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta)\right)^2 dC(\eta, \zeta).$$

C is equivalent to the square of the Poisson boundary \mathcal{P} ; thus

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 \Theta(\eta, \zeta) dv^2(\eta, \zeta)$$

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 \Theta(\eta, \zeta) dv^2(\eta, \zeta)$$

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 \Theta(\eta, \zeta) d\nu^2(\eta, \zeta)$$

non-trivial $HD(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and \mathcal{P}

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 \Theta(\eta, \zeta) d\nu^2(\eta, \zeta)$$

non-trivial $HD(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 \Theta(\eta, \zeta) d\nu^2(\eta, \zeta)$$

non-trivial $HD(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Problem

Is triviality of \mathcal{P} a group-theoretic invariant?

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 \Theta(\eta, \zeta) dv^2(\eta, \zeta)$$

non-trivial $HD(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Problem

Is triviality of \mathcal{P} a group-theoretic invariant?

Three 'modes' of triviality of *HD*:

- \mathcal{P} is trivial (i.e. contains ≤ 1 point)
- $\Theta(\eta, \zeta) = \infty$ for every η, ζ
- ullet Θ finite, but integral ∞

$$E(u) = \int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta)\right)^2 \Theta(\eta, \zeta) dv^2(\eta, \zeta)$$

non-trivial $HD(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Problem

Is triviality of \mathcal{P} a group-theoretic invariant?

Three 'modes' of triviality of *HD*:

- \mathcal{P} is trivial (i.e. contains ≤ 1 point)
- $\Theta(\eta, \zeta) = \infty$ for every η, ζ
- Θ finite, but integral ∞

Problem

Can a group display > 1 of these modes?

• let G = (V, E) be any graph

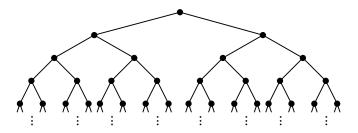
- let G = (V, E) be any graph
- give each edge a length $\ell(e)$

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v w \text{ path}\}\$

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

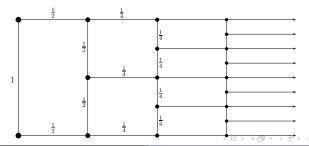
ℓ-TOP

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

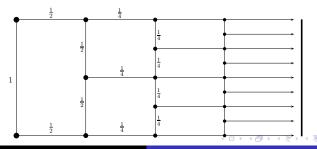


ℓ-TOP

- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space



- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space



- let G = (V, E) be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v \text{-} w \text{ path}\}\$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06 (easy))

If
$$\sum_{e \in E(G)} \ell(e) < \infty$$
 then $|G|_{\ell} \approx |G|$.

Applications of $|G|_{\ell}$ $(\ell$ -TOP)

• used by Floyd to study Kleinian groups (Invent. math. '80)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel, Electr. J. Comb)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)
- Colin de Verdiere et. al. use it to study self-adjointness of the Laplace and Schrödinger operators (Mathematical Physics, Analysis and Geometry, '10)

Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ $(\ell$ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_ℓ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)
- Colin de Verdiere et. al. use it to study self-adjointness of the Laplace and Schrödinger operators (Mathematical Physics, Analysis and Geometry, '10)

Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ $(\ell$ -TOP)

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|_{\ell} (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)
- Colin de Verdiere et. al. use it to study self-adjointness of the Laplace and Schrödinger operators (Mathematical Physics, Analysis and Geometry, '10)

All above authors "discovered" |G|_ℓ independently!

Our plan

We will construct brownian motion on $|G|_{\ell}$ as a limit of brownian motions on finite subgraphs.

Our plan

We will construct brownian motion on $|G|_\ell$ as a limit of brownian motions on finite subgraphs.

Theorem (G '06 (easy))

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell} \approx |G|$.

Level 1: The graph $|G|_{\ell}$ (with boundary)

Level 1: The graph $|G|_{\ell}$ (with boundary)

The space of **sample paths** $C = C([0, T] \rightarrow |G|_{\ell})$

Level 2:

Level 1: The graph $|G|_{\ell}$ (with boundary)

Level 2: The space of **sample paths** $C = C([0, T] \to |G|_{\ell})$ with the supremum metric $d_{\triangledown}(b, c) := \sup_{x \in |G|} d_{\ell}(b(x), c(x))$

Level 1: The graph $|G|_{\ell}$ (with boundary)

The space of **sample paths** $C = C([0, T] \rightarrow |G|_{\ell})$

with the supremum metric

 $d_{\heartsuit}(b,c) := \sup\nolimits_{x \in |G|} d_{\ell}(b(x),c(x))$

The space $\mathcal{M} = \mathcal{M}(C)$ of **measures** on C

Level 3:

Level 2:

Level 2:

Level 1: The graph $|G|_{\ell}$ (with boundary)

> The space of sample paths $C = C([0, T] \rightarrow |G|_{\ell})$

> > with the supremum metric

 $d_{\heartsuit}(b, c) := \sup_{x \in |G|} d_{\ell}(b(x), c(x))$

The space $\mathcal{M} = \mathcal{M}(C)$ of **measures** on Cwith the weak topology.

Level 3:

Level 2:

Level 1: The graph $|G|_{\ell}$ (with boundary)

The space of **sample paths** $C = C([0, T] \rightarrow |G|_{\ell})$

with the supremum metric

al (b. a)

 $d_{\heartsuit}(b,c) := \sup_{x \in |G|} d_{\ell}(b(x),c(x))$

The space $\mathcal{M} = \mathcal{M}(C)$ of **measures** on CLevel 3: with the *weak topology*, i.e. basic open sets of an element μ are of the form

$$\left\{ v \in \mathcal{M} : \left| \int f_i dv - \int f_i d\mu \right| < \epsilon_i, i = 1, \dots, k \right\}$$

Level 2:

Level 1: The graph $|G|_{\ell}$ (with boundary)

The space of **sample paths** $C = C([0, T] \rightarrow |G|_{\ell})$

with the supremum metric

with the supremum metric

 $d_{\triangledown}(b,c) := \sup\nolimits_{x \in |G|} d_{\ell}(b(x),c(x))$

The space $\mathcal{M} = \mathcal{M}(C)$ of **measures** on CLevel 3: with the *weak topology*, i.e. basic open sets of an element μ are of the form

 $\{v \in \mathcal{M} : |\int f_i dv - \int f_i d\mu| < \epsilon_i, i = 1, \dots, k\}$ where the f_i are bounded continuous real functions on C

Convergence in \mathcal{M}

Let G_n be a sequence exhausting G.

Convergence in M

Let G_n be a sequence exhausting G. Let C, μ_n be the brownian motion on G_n .

Convergence in M

Let G_n be a sequence exhausting G. Let C, μ_n be the brownian motion on G_n .

Theorem (classic)

Let $\Gamma \subseteq \mathcal{M}$. Then $\overline{\Gamma}$ is compact iff for every ϵ there is a function $\omega_{\epsilon}(\delta)$, with $\omega \to 0$ as $\delta \to 0$, such that $\mu(\{x : \mathbf{W}_{\mathbf{x}}(\delta) \leq \omega_{\epsilon}(\delta) \text{ for all } \delta\}) > 1 - \epsilon/2 \text{ for all } \mu \in \Gamma$,

where $w_x(\delta) := \sup_{|t-s| < \delta} |x(t) - x(s)|$ is the modulus of continuity of x.

Convergence in M

Let G_n be a sequence exhausting G. Let C, μ_n be the brownian motion on G_n .

Theorem (classic)

Let $\Gamma \subseteq \mathcal{M}$. Then $\overline{\Gamma}$ is compact iff for every ϵ there is a function $\omega_{\epsilon}(\delta)$, with $\omega \to 0$ as $\delta \to 0$, such that $\mu(\{x: w_x(\delta) \leq \omega_{\epsilon}(\delta) \text{ for all } \delta\}) > 1 - \epsilon/2$ for all $\mu \in \Gamma$, where $w_x(\delta) := \sup_{|t-s| < \delta} |x(t) - x(s)|$ is the modulus of continuity of x.

 $=> \{\mu_n\}_n$ has an accumulation point

Remark: It is known that $\mathcal{M}(X)$ is compact iff X is compact; this would have allowed us to circumvent the above theorem if C were compact, but it isn't (although $|G|_{\ell}$ is).

Theorem (G & K. Kolesko '12+)

Theorem (G & K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e) < \infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

 \bullet it behaves locally like standard BM on $\mathbb R$

Theorem (G & K. Kolesko '12+)

- ullet it behaves locally like standard BM on ${\mathbb R}$
- It is the limit of SRW's of finite subgraphs;

Theorem (G & K. Kolesko '12+)

- ullet it behaves locally like standard BM on ${\mathbb R}$
- It is the limit of SRW's of finite subgraphs;
- It is unique;

Theorem (G & K. Kolesko '12+)

- ullet it behaves locally like standard BM on ${\mathbb R}$
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;

Theorem (G & K. Kolesko '12+)

- ullet it behaves locally like standard BM on ${\mathbb R}$
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;
- It is recurrent;

Theorem (G & K. Kolesko '12+)

- ullet it behaves locally like standard BM on ${\mathbb R}$
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;
- It is recurrent;
- Even more, its expected cover time is ≤ CL², in particular almost surely finite!

- many applications in computer science
 - -universal traversal sequences [Lovász et.al.]
 - -testing graph connectivity [Lovász et.al., Karlin & Raghavan]
 - -protocol testing [Mihail & Papadimitriou]

- many applications in computer science
 - -universal traversal sequences [Lovász et.al.]
 - -testing graph connectivity [Lovász et.al., Karlin & Raghavan]
 - -protocol testing [Mihail & Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid

- many applications in computer science
 - -universal traversal sequences [Lovász et.al.]
 - -testing graph connectivity [Lovász et.al., Karlin & Raghavan]
 - -protocol testing [Mihail & Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid
- cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen & Zeitouni]

- many applications in computer science
 universal traversal sequences [Lovász et.al.]
 - -testing graph connectivity [Lovász et.al., Karlin & Raghavan]
 - -protocol testing [Mihail & Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid
- cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen & Zeitouni]
- Approximating algorithm [Ding, Lee & Peres, Ann. Math. '12]

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science
 - -universal traversal sequences [Lovász et.al.]
 - -testing graph connectivity [Lovász et.al., Karlin & Raghavan]
 - -protocol testing [Mihail & Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid
- cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen & Zeitouni]
- Approximating algorithm [Ding, Lee & Peres, Ann. Math. '12]

Theorem (G & P. Winkler '11)

The cover time for Brownian motion on a finite graph of total length L is at most $2L^2$.

Theorem (G & K. Kolesko '12+)

- ullet it behaves locally like standard BM on ${\mathbb R}$
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;
- It is recurrent;
- Even more, its expected cover time is ≤ CL², in particular almost surely finite!

Uniqueness of currents

Theorem (G '08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique non-elusive electric current with finite energy.

Uniqueness of currents

Theorem (G '08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique non-elusive electric current with finite energy.

Meta-conjecture: (statistical) physics extends to infinite networks of finite total length

