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Electrical Network Reduction

Theorem (G & V. Kaimanovich ’11)
Let N be an electrical network and B its set of external nodes.
Then there is an equivalent network with vertex set B in which
each edge (a,b) has conductance

Ceff (a,b) = d(a)Pa(b).
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The Discrete Dirichlèt Problem

Given: a graph G, a set of external nodes B ⊂ V , and a
boundary function (voltage) û : B → R.

Find: an extension u : V → R harmonic on internal nodes
(V \B).

Solution [Doyle & Snell]: Let

u(x) = E[û(b) | random walk from x exits at b]

Solution 2: Start d(b)û(b) particles at each b ∈ B, kill them
upon returning to B, and let

u(x) =
E[# visits to x]

d(x)
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Solution 2: Start d(b)û(b) particles at each b ∈ B, kill them
upon returning to B, and let

u(x) =
E[# visits to x]

d(x)

Agelos Georgakopoulos



The Discrete Dirichlèt Problem

Given: a graph G, a set of external nodes B ⊂ V , and a
boundary function (voltage) û : B → R.
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Groups and Random Walk

Theorem (Kesten ’59)
Let Γ be a group generated by a finite set S and let N be a

normal subgroup of Γ. Then the following are equivalent:
• ρ(Cay (Γ/N ,S)) = ρ(Cay (Γ,S));
• N is amenable.

ρ(Γ) := limn(px ,x ,2n)1/2n is the spectral radius of RW on Γ.
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Transience vs. Recurrence

Transience is a group invariant:

Theorem (Markvorsen, Guinness & Thomassen ’92)
All locally finite Cayley graphs of a finitely generated
group are of the same type.

Theorem (T. Lyons ’83)

Random Walk on a graph G is transient
<=>

there is a flow of finite energy from some vertex o to
infinity.

Energy E(i):=
∑

xy∈E(G) i(xy )2
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The Effective Conductance Measure

For any infinite graph G, we construct a measure space
C = C(G) that allows expressing the energy of harmonic
functions as an integral on the boundary:

Theorem (G & V. Kaimanovich ’12+)
For every transient locally finite network N there is a measure
C on P2 such that for every harmonic function u with boundary
function û,

E(u) =
∫
P2

(
û(η) − û(ζ)

)2
dC(η, ζ).

C is equivalent to the square of the Poisson boundary P; thus

E(u) =
∫
P2

(
û(η) − û(ζ)

)2
Θ(η, ζ)dν2(η, ζ)
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û(η) − û(ζ)
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Groups and Harmonic Functions

E(u) =
∫
P2

(
û(η) − û(ζ)

)2
Θ(η, ζ)dν2(η, ζ)

non-trivial HD(G) =⇒ non-trivial H∞(G) and P =⇒ transient G

Problem
Is triviality of P a group-theoretic invariant?

Three ‘modes’ of
triviality of HD:

P is trivial (i.e. contains ≤ 1 point)
Θ(η, ζ) = ∞ for every η, ζ
Θ finite, but integral ∞

Problem
Can a group display > 1 of these modes?
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Our setup: `-TOP

`-TOP

let G = (V ,E) be any graph

give each edge a length `(e)
this induces a metric: d(v ,w) := inf{`(P) | P is a v -w path}
let |G|` be the completion of the corresponding metric space

Theorem (G ’06 (easy))
If
∑

e∈E(G) `(e) < ∞ then |G|` ≈ |G|.
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Applications of |G|`

Applications of |G|` aa(`-TOP)

used by Floyd to study Kleinian groups (Invent. math. ’80)
Gromov showed that his hyperbolic compactification is a special
case of |G|` (Hyperbolic Groups... ’87)
used by Benjamini and Schramm for Random Walks/harmonic
functions/sphere Packings (Invent. math. ’96, Preprint ’09)
application in the study of the Cycle Space of an infinite graph
(G & Sprüssel, Electr. J. Comb)
application in Electrical Networks (G, JLMS ’10)
Carlson studied the Dirichlet Problem at the boundary (Analysis
on graphs and its applications, ’08)
Colin de Verdiere et. al. use it to study self-adjointness of the
Laplace and Schrödinger operators (Mathematical Physics,
Analysis and Geometry, ’10)

All above authors “discovered” |G|` independently!
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Our plan

We will construct brownian motion on |G|` as a limit of brownian
motions on finite subgraphs.

Theorem (G ’06 (easy))
If
∑

e∈E(G) `(e) < ∞ then |G|` ≈ |G|.
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Our three topologies

Level 1: The graph |G|` (with boundary)

Level 2:

The space of sample paths
C = C([0,T ]→ |G|`)
with the supremum metric
d♥(b, c) := supx∈|G| d`(b(x), c(x))

Level 3:
The spaceM =M(C) of measures on C
with the weak topology, i.e. basic
open sets of an element µ are of the form{

ν ∈ M : |
∫

fidν −
∫

fidµ| < εi , i = 1, . . . , k
}

where the fi are bounded continuous real functions on C
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Convergence inM

Let Gn be a sequence exhausting G.

Let C, µn be the brownian motion on Gn.

Theorem (classic)

Let Γ ⊆ M. Then Γ is compact iff for every ε there is a function
ωε(δ), with ω→ 0 as δ→ 0, such that
µ({x : wx (δ) ≤ ωε(δ) for all δ}) > 1 − ε/2 for all µ ∈ Γ,

where wx (δ) := sup|t−s|<δ |x(t) − x(s)| is the modulus of continuity of x.

=> {µn}n has an accumulation point

Remark: It is known thatM(X ) is compact iff X is compact; this
would have allowed us to circumvent the above theorem if C were
compact, but it isn’t (although |G|` is).
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brownian motion on |G|`

Theorem (G & K. Kolesko ’12+)
For every G, ` such that

∑
e∈E `(e) < ∞, there is a brownian

motion B` on |G|` with the following properties

it behaves locally like standard BM on R
It is the limit of SRW’s of finite subgraphs;
It is unique;
Transition probabilities can be calculated using electrical
networks;
It is recurrent;
Even more, its expected cover time is ≤ CL2, in particular
almost surely finite!
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Cover Time

The Cover Time of a graph is being studied in several
disciplines:

many applications in computer science
–universal traversal sequences [Lovász et.al.]
–testing graph connectivity [Lovász et.al., Karlin & Raghavan]
–protocol testing [Mihail & Papadimitriou]
physicists study the fractal structure of the uncovered set
of a finite grid
cover time of Brownian motion on Riemannian manifolds
[Dembo, Peres, Rosen & Zeitouni]
Approximating algorithm [Ding, Lee & Peres, Ann. Math. ’12]

Theorem (G & P. Winkler ’11)
The cover time for Brownian motion on a finite graph of total
length L is at most 2L2.
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Uniqueness of currents

Theorem (G ’08)
In a network with

∑
e∈E r (e) < ∞ there is a unique

non-elusive electric current with finite energy.

Meta-conjecture: (statistical) physics extends to infinite
networks of finite total length
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